Lightweight Deep Unrolling Network With Enhanced Robustness For Infrared Small Target Detection

Xianchao Xiu

Department of Automation

Mathematical Optimization Society, May 16-19, 2025

Joint work with Yinchao Han (SHU), Jingjing Liu (SHU) and Wanquan Liu (SYSU)

ISTD

Infrared small target detection (ISTD)

- Difficulties: small size, low SNR, weak contrast
- Advantages: strong concealment, good anti-interference

Trends of "infrared small target detection" on Google Scholar

Existing methods

- Filter-based: spatial domain, transformed domain
- Local information-based: local contrast, local entropy
- Data structure-based: subspace, dictionary, tensor representation
- Deep learning-based

DUN

From iterative optimization to deep unrolling networks

- Gregor-LeCun, ICML, 2010
- Yang-Sun-Li-Xu, IEEE TPAMI, 2020
- Zhang-Chen-Xiong-Zhang, IEEE SPM, 2023
- Chen-Liu-Yin, Science China Mathematics, 2024

https://github.com/xianchaoxiu/AI40PT

RPCANet

From RPCA to RPCANet

How to enhance robustness? How to realize lightweight?

Methodology

► From RPCANet to RPCANet+

$$\min_{B,T} ||B||_* + \lambda ||T||_1$$

s.t. $D = B + T$
 \downarrow
$$\min_{B,T,N} ||B||_* + \lambda ||T||_1 + \mu ||N||_F^2$$

s.t. $D = B + T + N$
 \downarrow
$$\min_{B,T,N} \mathcal{R}(B) + \lambda \mathcal{S}(T) + \mu \mathcal{G}(N)$$

s.t. $D = B + T + N$

Unconstrained version

$$\mathcal{L}(B, T, N) = \mathcal{R}(B) + \lambda \mathcal{S}(T) + \mu \mathcal{G}(N) + \frac{\alpha}{2} \|D - B - T - N\|_{F}^{2}$$

Update B

Bcakgound estimation module + squeeze-and-excitation network (SEBEM)

Update T

Target estimation module + squeeze-and-excitation network (SETEM)

Update T

► Set $\gamma = 0.5$ $T^{k} = \gamma T^{k-1} + (1 - \gamma)(D^{k-1} - B^{k} - N^{k-1}) - \varepsilon \nabla S(T^{k-1})$ \downarrow $T^{k} = T^{k-1} + D^{k-1} - B^{k} - N^{k-1} - \varepsilon \nabla S(T^{k-1})$ \downarrow $T^{k} = T^{k-1} + D^{k-1} - B^{k} - N^{k-1} - \varepsilon^{k} \mathcal{H}^{k}(T^{k-1} + D^{k-1} - B^{k} - N^{k-1})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Update N

Noise reduction module + squeeze-and-excitation network (SENRM)

$$N^{k} = N^{k-1} + D^{k-1} - B^{k} - T^{k} - \sigma^{k} \mathcal{F}^{k} (N^{k-1} + D^{k-1} - B^{k} - T^{k})$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Update D

Image reconstruction module + squeeze-and-excitation network (SEIRM)

 $D^{k} = B^{k} + T^{k} + N^{k}$ \Downarrow $D^{k} = \mathcal{M}^{k}(B^{k} + T^{k} + N^{k})$

Architecture

Experiment

- Compared methods
 - ▶ IPI: Gao-Meng-Yang-Wang-Zhou-Hauptmann, IEEE TIP, 2013
 - MPCM: Wei-You-Li, PR, 2016
 - PSTNN: Zhang-Peng, RS, 2019
 - AGPCNet: Zhang-Li-Cao-Pu-Peng, IEEE TAES, 2023
 - UIUNet: Wu-Hong-Chanussot, IEEE TIP, 2023
 - MSHNet: Liu-Liu-Zheng-Wang-Fu, CVPR, 2024
 - RPCANet: Wu-Zhang-Li-Huang-Peng, WACV, 2024
- Evaluation metrics
 - Mean intersection over union (mIoU \uparrow), F₁-score (F₁ \uparrow), Probability of detection (P_d \uparrow)
 - ▶ False alarm rate $(F_a \downarrow)$
- Loss function

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{segmentation}} + \eta \mathcal{L}_{\text{fidelity}} = \left(1 - \frac{1}{M_t} \sum_{i=1}^{M_t} \frac{\text{TP}}{\text{FP} + \text{TP} + \text{FN}}\right) + \frac{\eta}{M_t M} \sum_{i=1}^{M_t} \|D^K - D\|_F^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Performance

Quantitative results

Methods	#Params	NUDT-SIRST			IRSTD-1k			SIRST-Aug			Time(s)			
		mloU ↑	$F_1 \uparrow$	$\mathrm{P_d}\uparrow$	$F_{a}\downarrow$	mloU ↑	$F_1 \uparrow$	$\mathrm{P}_{\mathrm{d}}\uparrow$	$F_{a}\downarrow$	mloU ↑	$F_1 \uparrow$	$\mathrm{P_d}\uparrow$	$F_{a}\downarrow$	CPU/GPU
IPI	-	34.83	51.49	92.58	7.14	18.67	31.48	78.54	11.11	21.90	35.97	80.36	2.20	3.0972/-
PSTNN	-	25.46	40.58	78.52	7.95	14.87	25.89	68.73	6.51	19.76	33.00	93.40	3.14	0.2249/-
MPCM	-	25.96	40.78	78.59	7.91	14.81	25.93	69.03	6.51	19.49	33.00	93.58	3.04	0.0624/-
AGPCNet	12.360M	85.41	92.15	98.10	4.72	61.00	75.75	89.35	5.34	72.36	83.83	99.03	35.56	-/0.0205
UIUNet	50.540M	88.71	94.01	91.43	1.89	63.06	77.35	93.60	6.57	71.80	83.59	98.35	28.29	-/0.0317
MSHNet	4.065M	75.99	86.57	96.07	2.63	64.50	77.55	91.68	4.46	71.64	84.16	90.78	23.09	-/0.0245
RPCANet	0.680M	89.31	94.35	97.14	2.87	63.21	77.45	88.31	4.39	72.54	84.08	98.21	34.14	-/0.0096
RPCANet+	0.216M	92.37	96.04	98.41	1.79	64.68	78.55	89.39	4.66	74.56	85.43	99.17	29.78	-/ 0.0072

	NUDT-SIRST	IRSTD-1k	SIRST-Aug
#Size	256×256	512×512	256×256
#Training	663	800	8525
#Testing	662	201	545

Visualization

Comparisons on IRSTD-1k

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ● ◆○ ◆

Visualization

A close look at stages

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Robustness

Gaussian noise

Salt-and-pepper noise

100

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Discussion

Effects of stage *K*

ĸ	#Params	NUDT-	SIRST	IRSTI	D-1k	SIRST-Aug		
	# r aranns	mloU ↑	$F_1 \uparrow$	mloU ↑	$\mathbf{F}_1 \uparrow$	mloU ↑	$F_1 \uparrow$	
1	0.0360M	72.83	84.28	91.39	95.51	61.26	75.98	
2	0.0720M	72.96	84.37	91.61	95.62	61.59	76.24	
3	0.1080M	73.58	84.78	91.53	95.58	62.60	77.00	
4	0.1439M	73.81	84.93	90.06	95.06	61.98	76.53	
5	0.1799M	74.28	85.24	91.64	95.64	63.45	77.63	
6	0.2159M	74.56	85.43	92.37	96.04	64.68	78.55	
7	0.2519M	72.29	83.92	88.53	93.58	62.29	76.76	

 Effects of bottleneck channel (BC) and total channel (TC)

#BC	#TC	mloU ↑	$F_1\uparrow$	
4	32	74.56	85.43	
4	40	72.54	83.08	
4	48	72.10	82.59	
4	56	70.34	80.08	
4	64	68.54	78.35	
8	32	73.96	85.03	
16	32	71.19	83.17	

Conclusion

Conclusion

- How to enhance robustness? \Rightarrow RPCA + noise reduction + attention mechanism
- How to realize lightweight? \Rightarrow intermediate bottleneck + multi-layer mapping

Methods	mloU ↑	$F_1 \uparrow$	$\rm P_{d}$ \uparrow	$F_a\downarrow$
IPI	25.13	39.65	83.83	6.81
PSTNN	20.03	33.16	80.22	5.87
MPCM	20.09	33.24	80.40	5.82
RPCANet+	77.20	86.67	95.66	12.08

What about the convergence?

- Ryu-Liu-Wang-Chen-Wang-Yin, ICML, 2019
- Mukherjee-Hauptmann-Öktem-Pereyra-Schönlieb, IEEE SPM, 2023

References

- Gao-Meng-Yang-Wang-Zhou-Hauptmann, Infrared Patch-Image Model for Small Target Detection in A Single Image, IEEE TIP, 2013
- Zhang-Ghanem, ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing, CVPR, 2018
- Zhao-Li-Li-Hu-Ma-Tao, Single-Frame Infrared Small-Target Detection: A Survey, IEEE GRSM, 2022
- Liu-Liu-Zheng-Wang-Fu, Infrared Small Target Detection with Scale and Location Sensitivity, CVPR, 2024
- Wu-Zhang-Li-Huang-Peng, RPCANet: Deep Unfolding RPCA Based Infrared Small Target Detection, WACV, 2024

Thank you for your attention! xcxiu@shu.edu.cn