Bi-Sparse Unsupervised Feature Selection

Xianchao Xiu

Department of Automation

Operations Research Society of China, Oct 18-21, 2024

Joint work with Chenyi Huang (SHU), Pan Shang (CAS) and Wanquan Liu (SYSU)

Outline

Introduction

Proposed Method

Numerical Experiments

Conclusions and Future Work

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Unsupervised Feature Selection

- Select a subset of input features without labels
- https://dannybutvinik.medium.com

Related Works

► Yang-Shen-Huang-Zhou, IJCAI, 2011

$$\min_{W} - \operatorname{Tr}(W^{\top}SW) + \lambda \|W\|_{2,1}$$
 s.t. $W^{\top}W = I$

► Tian-Nie-Wang-Li, NIPS, 2020

$$\min_{W} - \operatorname{Tr}(W^{\top}SW) + \lambda \|W\|_{2,0}$$
 s.t. $W^{\top}W = I$

► Li-Nie-Bian-Wu-Li, IEEE TPAMI, 2023

$$\begin{split} \min_{W} & -\operatorname{Tr}(W^{\top}SW) + \lambda \|W\|_{2,p}^{p} \ (0$$

うせん 前 ふばやふばやふむやる

Related Works

Zhu-Zhang-Wen-He-Cheng, MTA, 2017

$$\min_{W} - \operatorname{Tr}(W^{\top}SW) + \lambda_{1} \|W\|_{2,1} + \lambda_{2} \|W\|_{1}$$
s.t. $W^{\top}W = I$

Other fields

- Rubinstein-Zibulevsky-Huang-Elad, IEEE TSP, 2010
- ► Hu-Liu-Gao-Shang, IEEE TCBB, 2021
- Bian-Xu-Wang, IEEE PIMRC, 2022
- Zhang-Liu-Li, IEEE TIP, 2023

Can non-convex bi-sparse optimization benefit UFS?

Outline

Introduction

Proposed Method

Numerical Experiments

Conclusions and Future Work

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

New Formulation

Bi-sparse unsupervised feature selection

Advantages

- Bi-sparse optimization: $\lambda_1 \|W\|_{2,p}^p + \lambda_2 \|W\|_q^q$
- A non-convex framework: $0 \leq p, q < 1$

Optimization Algorithm

- First-order algorithm: PAM (Proximal Alternating Method)
- Model reformulation

Optimization Algorithm

- Input: X, λ₁, λ₂, β₁, β₂, p,q, τ₁, τ₂, τ₃
 Initialize: W⁰, U⁰, V⁰
- While not converged do
 - Update W^{k+1} by

$$\min_{W} - \operatorname{Tr}(W^{\top}SW) + \frac{\beta_{1}}{2} \|W - U^{k}\|_{\mathrm{F}}^{2} + \frac{\beta_{2}}{2} \|W - V^{k}\|_{\mathrm{F}}^{2} + \frac{\tau_{1}}{2} \|W - W^{k}\|_{\mathrm{F}}^{2}$$

s.t. $W^{\top}W = I$

• Update
$$U^{k+1}$$
 by

$$\min_{U} \lambda_2 \|U\|_q^q + \frac{\beta_1}{2} \|W^{k+1} - U\|_{\mathrm{F}}^2 + \frac{\tau_2}{2} \|U - U^k\|_{\mathrm{F}}^2$$

• Update V^{k+1} by

$$\min_{V} \lambda_{1} \|V\|_{2,p}^{p} + \frac{\beta_{2}}{2} \|W^{k+1} - V\|_{\mathrm{F}}^{2} + \frac{\tau_{3}}{2} \|V - V^{k}\|_{\mathrm{F}}^{2}$$

▶ Output: $W^{k+1}, U^{k+1}, V^{k+1}$

Update W

Riemannian gradient

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Update W

▶ Riemannian Hessian

$$\nabla^2 g(W) = -2I \otimes S + (\beta_1 + \beta_2 + \tau_1)I$$

$$\downarrow$$
Hess $g(W) = \mathcal{P}_W(\nabla^2 g(W))$

$$= \nabla^2 g(W) - W \operatorname{sym}(W^\top \nabla^2 g(W))$$

$$\downarrow$$
Hess $g(W) \approx \frac{\operatorname{grad} g(W + \varepsilon I) - \operatorname{grad} g(W)}{\varepsilon}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Update W

▶ Input: *S*, U^k , V^k , β_1 , β_2 , τ_1 , ε , $\Delta' > 0$, $\rho' \in [0, \frac{1}{4})$

While not converged do

• Obtain η_i by solving trust domain subproblem

$$\begin{split} \min_{\eta \in \mathsf{T}_{\mathsf{W}} \operatorname{St}(d,m)} \ & m_{W}(\eta) = g(W) + \mathsf{Tr}(\eta^{\top} \operatorname{\mathsf{grad}} g(W)) + \frac{1}{2} \operatorname{\mathsf{vec}}(\eta)^{\top} \operatorname{\mathsf{Hess}} g(W) \operatorname{\mathsf{vec}}(\eta) \\ & \text{s.t.} \quad \operatorname{\mathsf{Tr}}(\eta^{\top} W \eta^{\top}) \leq \Delta^{2} \end{split}$$

• Compute the trust ratio
$$\rho_i$$

• if $\rho_i < \frac{1}{4}$ then
 $\Delta_{i+1} = \frac{1}{4}\Delta_i$
• else if $\rho_i > \frac{3}{4}$ and $||\eta_i|| = \Delta_i$ then
 $\Delta_{i+1} = \min(2\Delta_i, \Delta')$
• else
 $\Delta_{i+1} = \Delta_i$
• if $\rho_i > \rho'$ then
 $W_{i+1}^k = R_W(\eta_i)$
• else
 $W_{i+1}^k = W_i^k$
Output: W

Update U

$$\begin{split} \min_{U} \lambda_{2} \|U\|_{q}^{q} + \frac{\beta_{1}}{2} \|W^{k+1} - U\|_{F}^{2} + \frac{\tau_{2}}{2} \|U - U^{k}\|_{F}^{2} \\ & \downarrow \\ \\ \min_{U} \lambda_{2} \|U\|_{q}^{q} + \frac{\beta_{1} + \tau_{2}}{2} \|U - \frac{\beta_{1}}{\beta_{1} + \tau_{2}} W^{k+1} + \frac{\tau_{2}}{\beta_{1} + \tau_{2}} U^{k}\|_{F}^{2} \\ & \downarrow \\ \\ & \downarrow \\ \\ \\ \min_{u_{ij}} \lambda_{2} |u_{ij}|^{q} + \frac{\beta_{1} + \tau_{2}}{2} (u_{ij} - y_{ij})^{2} \\ & \downarrow \\ \end{split}$$

 $u_{ij} = \mathsf{Prox}(y_{ij}, \lambda_2/(\beta_1 + \tau_2))$

Lemma

▶ Revisiting l_q (0 ≤ q<1) Norm Regularized Optimization, arXiv:2306.14394

$$\begin{aligned} \mathsf{Prox}(a,\lambda) &= \operatorname{argmin}_{x} \frac{1}{2}(x-a)^{2} + \lambda |x|^{q} \ (0 \leq q < 1) \\ &= \begin{cases} \{0\}, & |a| < \kappa(\lambda,q) \\ \{0, \operatorname{sgn}(a)c(\lambda,q)\}, & |a| = \kappa(\lambda,q) \\ \{\operatorname{sgn}(a)\varpi_{q}(|a|)\}, & |a| > \kappa(\lambda,q) \end{cases} \end{aligned}$$

where

$$c(\lambda, q) = (2\lambda(1-q))^{\frac{1}{2-q}} > 0$$

$$\kappa(\lambda, q) = (2-q)\lambda^{\frac{1}{2-q}}(2(1-q))^{\frac{q+1}{q-2}}$$

$$\varpi_q(a) \in \left\{ x : x - a + \lambda q \operatorname{sgn}(x)x^{q-1} = 0, x > 0 \right\}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Update V

Convergence

- f(Q) is proper and lower semicontinuous.
- ▶ f(Q) satisfies the K-L property at each $Q \in \text{dom } f$.
- ▶ Assume the sequence $\{Q^k\}_{k \in \mathbb{N}}$ is generated by above algorithm. Then the following inequality holds

$$f(Q^{k+1}) + au \| Q^{k+1} - Q^k \|_{\mathrm{F}}^2 \leq f(Q^k)$$

where $\tau = \frac{1}{2} \min\{\tau_1, \tau_2, \tau_3\}.$

▶ Assume that $\{Q^k\}_{k \in \mathbb{N}}$ is generated by above algorithm. Then, $\{Q^k\}_{k \in \mathbb{N}}$ is bounded. In addition, there exists $V \in \partial f(Q^{k+1})$ such that

$$\|V\|_{\mathrm{F}} \leq a \|Q^{k+1} - Q^k\|_{\mathrm{F}}$$

where $a = \max\{\tau_1, \beta_1 + \tau_2, \beta_2 + \tau_3\}.$

Convergence

Assume $\{(W^k, U^k, V^k)\}_{k \in \mathbb{N}}$ is generated by above algorithm. Then, the sequence $\{(W^k, U^k, V^k)\}_{k \in \mathbb{N}}$ globally converges to a critical point of f(W, U, V), *i.e.*,

 $0\in\partial f(W^*,U^*,V^*)$

with

$$\lim_{k\to+\infty}(W^k,U^k,V^k)=(W^*,U^*,V^*)$$

and $\partial f(\cdot)$ being the limiting subdifferential set.

Outline

Introduction

Proposed Method

Numerical Experiments

Conclusions and Future Work

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Experimental Details

- Compared methods
 - LapScore: He-Cai-Niyogi, NIPS, 2005
 - MCFS: Cai-Zhang-He, SIGKDD, 2010
 - UDFS: Yang-Shen-Ma, IJCAI, 2011
 - ▶ SOGFS: Nie-Zhu-Li, IEEE TKDE, 2021
 - ▶ RNE: Liu-Ye-Li-Wang, KBS, 2020
 - ► FSPCA: Tian-Nie-Wang-Li, NIPS, 2020
 - SPCAFS: Li-Nie-Bian, IEEE TPAMI, 2023
 - GSPCA: Zhu-Zhang-Wen, MTA, 2017
- Implementation setups
 - Initialization: QR decomposition
 - Stopping criteria:

$$\frac{|f(W^{k+1}, U^{k+1}, V^{k+1}) - f(W^k, U^k, V^k)|}{\max\{1, |f(W^k, U^k, V^k)|\}} \le 10^{-4}$$

Experimental Details

Selected datasets

Туре	Datasets	Features	Samples	Classes
	Dartboard1	9	1000	4
Synthetic datasets	Diamond9	9	3000	9
	COIL20	1024	1440	20
Real-world datasets	USPS	256	1000	10
	LUNG	325	73	7
	GLIOMA	4434	50	4
	UMIST	644	575	20
	pie	1024	1166	53
	Isolet	617	1560	26
	MSTAR	1024	2425	10

Evaluation metrics

- ► ACC: Accuracy
- NMI: Normalized mutual information

Synthetic Experiments

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

ACC comparisons

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

ACC comparisons

Datasets	ALLfea	LapScore	MCFS	SOGFS	RNE	UDFS	SPCAFS	FSPCA	GSPCA	BSUFS
COIL 20	58.97±4.99	$53.91 {\pm} 3.61$	57.35±3.83	49.66±3.63	55.16 ± 3.35	56.77±3.09	54.63±3.64	51.71±3.05	55.12±2.67	59.18±3.49
COIL20	(10)	(100)	(80)	(100)	(20)	(70)	(100)	(50)	(100)	(100)
leolot	$59.18 {\pm} 3.19$	$52.55 {\pm} 2.83$	$52.87 {\pm} 2.87$	$48.93{\pm}2.69$	$47.39{\pm}2.91$	41.11 ± 1.71	$52.26 {\pm} 2.81$	54.15±2.69	$51.84{\pm}2.82$	$61.34{\pm}3.33$
Isolet	(10)	(100)	(50)	(100)	(80)	(100)	(100)	(70)	(100)	(80)
LISPS	$67.79 {\pm} 4.96$	$61.76{\pm}4.52$	$\textbf{68.70}{\pm}\textbf{4.10}$	$56.00 {\pm} 3.48$	$61.28 {\pm} 3.46$	62.83±3.79	66.98 ± 3.92	65.43±4.90	$66.79{\pm}4.10$	70.77±3.73
0313	(10)	(100)	(40)	(100)	(100)	(100)	(100)	(90)	(100)	(50)
umiet	$41.68{\pm}2.46$	$39.71 {\pm} 3.28$	$\textbf{50.54}{\pm}\textbf{4.16}$	$43.81{\pm}2.98$	41.01 ± 2.25	$38.64{\pm}1.61$	47.32 ± 3.48	46.58±2.34	40.65±2.29	$\textbf{52.29}{\pm}\textbf{3.61}$
unnsc	(10)	(100)	(80)	(60)	(90)	(40)	(80)	(100)	(90)	(20)
GLIOMA	$57.44{\pm}6.40$	$57.36{\pm}3.60$	$55.52 {\pm} 9.25$	$57.32{\pm}6.47$	$\textbf{57.80{\pm}2.98}$	56.64 ± 6.47	52.08 ± 3.64	48.04±5.26	51.00 ± 5.08	$\textbf{61.28}{\pm 9.01}$
GLIOWIA	(10)	(100)	(100)	(20)	(20)	(70)	(80)	(90)	(20)	(100)
nio	$25.79 {\pm} 1.39$	$34.86{\pm}1.43$	$31.46{\pm}1.47$	$23.78 {\pm} 1.19$	$17.49 {\pm} 0.76$	$26.82{\pm}1.32$	41.16±2.46	30.39±1.43	40.90±1.85	42.45±1.74
pie	(10)	(60)	(70)	(100)	(40)	(100)	(60)	(100)	(50)	(80)
LUNG	66.03±7.23	$60.93{\pm}8.02$	70.55±7.66	$67.53 {\pm} 7.73$	66.68±8.32	65.89±7.43	$70.16 {\pm} 7.71$	63.62±5.45	70.68±7.41	$73.51{\pm}6.80$
LONG	(10)	(70)	(100)	(90)	(100)	(90)	(100)	(20)	(100)	(90)
MSTAR	$80.81 {\pm} 8.76$	$68.21{\pm}4.57$	$77.60 {\pm} 8.32$	$73.46{\pm}5.61$	$77.82{\pm}6.16$	81.25±7.48	$78.63 {\pm} 8.68$	78.74±5.20	80.65±6.47	$\textbf{81.43}{\pm}\textbf{6.89}$
MISTAR	(10)	(100)	(100)	(100)	(100)	(100)	(90)	(30)	(100)	(100)
Average	57.21±4.92	53.66±3.98	58.07±5.21	52.56±4.22	53.08±3.77	53.74±4.11	57.90±4.54	54.83±3.79	57.21±4.09	62.78±4.83

NMI comparisons

・ロト・日本・日本・日本・日本・

NMI comparisons

Datasets	ALLfea	LapScore	MCFS	SOGFS	RNE	UDFS	SPCAFS	FSPCA	GSPCA	BSUFS
COIL 20	76.04±1.69	69.01±1.53	73.98±1.79	68.03±1.59	70.76±2.07	$69.12{\pm}1.17$	70.29±1.31	68.41±1.60	70.44±1.37	74.78±1.79
COIL20	(10)	(100)	(80)	(100)	(100)	(80)	(100)	(100)	(100)	(100)
leolot	$76.09 {\pm} 1.77$	69.86±1.26	68.29±1.05	67.15 ± 1.45	64.74±1.28	$56.73 {\pm} 1.05$	$69.18 {\pm} 1.33$	$71.12{\pm}1.11$	67.02±1.43	$75.32{\pm}1.22$
isolet	(10)	(100)	(50)	(90)	(100)	(100)	(100)	(80)	(100)	(100)
LISPS	$62.11 {\pm} 2.24$	$59.37 {\pm} 1.98$	$\textbf{62.18}{\pm}\textbf{2.01}$	$53.36{\pm}1.83$	$52.77 {\pm} 2.01$	$57.76 {\pm} 2.02$	$60.28 {\pm} 2.17$	$\textbf{61.14}{\pm}\textbf{1.87}$	60.54±2.29	$60.16{\pm}1.68$
0313	(10)	(100)	(40)	(100)	(100)	(100)	(100)	(100)	(100)	(50)
umist	$64.07 {\pm} 1.76$	$61.23 {\pm} 2.15$	71.71±2.29	$61.46{\pm}2.03$	$56.08 {\pm} 1.80$	$55.43{\pm}1.50$	$66.26{\pm}1.74$	$64.94{\pm}1.65$	$55.88{\pm}1.62$	67.62±1.91
unnac	(10)	(100)	(100)	(70)	(60)	(80)	(100)	(100)	(100)	(70)
GLIOMA	$49.59{\pm}6.76$	$\textbf{48.96}{\pm\textbf{3.59}}$	$34.15 {\pm} 9.10$	$46.51 {\pm} 9.11$	$54.21{\pm}2.23$	$45.86{\pm}8.08$	22.01 ± 4.88	$22.17{\pm}5.17$	$21.09 {\pm} 4.65$	$45.14{\pm}8.66$
GLIOINA	(10)	(100)	(50)	(20)	(100)	(20)	(80)	(90)	(100)	(100)
nie	51.01 ± 1.02	$57.53 {\pm} 0.73$	57.16 ± 1.01	48.05±0.76	$40.45 {\pm} 0.79$	$50.55{\pm}1.03$	$64.94{\pm}1.30$	$56.21 {\pm} 0.90$	$\textbf{65.20}{\pm}\textbf{1.42}$	$\textbf{66.66}{\pm}\textbf{1.14}$
pic	(10)	(90)	(70)	(100)	(100)	(100)	(100)	(100)	(100)	(80)
LUNG	$63.18{\pm}5.48$	57.44±6.44	68.53±5.20	63.62 ± 5.41	$63.74{\pm}5.30$	$64.27 {\pm} 5.35$	$67.91 {\pm} 6.23$	62.23±4.80	$\textbf{68.96}{\pm}\textbf{5.71}$	72.64±4.69
LONG	(10)	(70)	(100)	(40)	(90)	(90)	(100)	(20)	(100)	(90)
MSTAD	$83.96{\pm}3.14$	73.90±1.62	$\textbf{81.85}{\pm}\textbf{2.91}$	$76.56 {\pm} 1.54$	$78.26 {\pm} 2.51$	$78.18{\pm}3.64$	$79.62 {\pm} 2.30$	78.87±2.52	80.53±2.41	80.66±2.68
WISTAK	(10)	(100)	(100)	(100)	(100)	(90)	(100)	(90)	(100)	(100)
Average	65.76±2.98	62.16±2.41	64.73±3.17	60.59±2.96	60.13±2.25	59.74±2.98	62.56±2.66	60.64±2.45	61.21±2.61	67.87±2.97

Effects of p and q

ACC comparisons

◆□ > ◆□ > ◆三 > ◆三 > ・三 の < ⊙

Effects of p and q

NMI comparisons

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

Ablation Experiments

ACC comparisons

Datasets	Case I	Case II	Case III	Case IV
COIL20	54.09	57.19	58.76	59.18
Isolet	51.77	59.49	56.19	61.34
USPS	67.06	67.58	68.11	70.77
umist	47.16	47.52	49.23	52.29
GLIOMA	49.76	59.16	60.12	61.28
pie	40.98	40.79	41.15	42.45
LUNG	71.34	70.30	72.33	73.51
MSTAR	79.25	78.63	80.08	81.43

NMI comparisons

Datasets	Case I	Case II	Case III	Case IV
COIL20	69.94	72.31	74.57	74.78
Isolet	66.84	73.18	72.73	75.32
USPS	60.65	59.10	61.14	60.16
umist	66.48	67.14	69.45	67.62
GLIOMA	20.64	44.74	43.13	45.14
pie	65.02	65.13	65.23	66.66
LUNG	69.31	69.08	71.94	72.64
MSTAR	79.92	79.61	79.97	80.66

Visual comparisons

Methods		Sam	ACC	NMI		
Case I	they ame	Stoppin's	Station)	the part of	40.98	65.02
Case II	C. S. S.	Starpin's	Starin)	the grade	40.79	65.11
Case III	the same	the pair :	al argun	the pair	41.15	65.23
Case IV	1	1.1	E subr		42.45	66.66

Statistical Tests

Friedman test

Methods	Ranking	P-value	Hypothesis
LapScore	5.670		
MCFS	3.750	1	
SOGFS	6.875	1	
RNE	6.125	0.0005	Paiast
UDFS	6.000	0.0003	Reject
SPCAFS	4.375	1	
FSPCA	5.750	1	
GSPCA	4.750	1	
BSUFS	1.000	1	

Post-hoc Nemenyi test

Discussion

Feature correlation

Model stability

Outline

Introduction

Proposed Method

Numerical Experiments

Conclusions and Future Work

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Conclusions and Future Work

Conclusions

- Construct bi-sparse optimization with $p, q \in [0, 1)$
- Develop an efficient and convergent PAM algorithm
- Perform sufficient experiments on real-word datasets
- Future work
 - Learn sparse via deep NNs
 - Extend to decentralized optimization
 - Apply to IoT anomaly detection

Thank you for your attention! xcxiu@shu.edu.cn

References

- Y. Yang, H. Shen, Z. Ma, Z. Huang, X. Zhou, *l*_{2,1}-Norm Regularized Discriminative Feature Selection for Unsupervised Learning, IJCAI International Joint Conference on Artificial Intelligence, 1589-1594, 2011
- Y. Zhu, X. Zhang, G. Wen, W. He, D. Cheng, Double Sparse Representation Feature Selection Algorithm for Classification, Multimedia Tools and Applications, 76: 17525-17539, 2017
- L. Tian, F. Nie, R. Wang, X. Li, Learning Feature Sparse Principal Subspace, Advances in Neural Information Processing Systems, 33, 14997-15008, 2020
- Z. Li, F. Nie, J. Bian, D. Wu, X. Li, Sparse PCA via l_{2,p}-Norm Regularization for Unsupervised Feature Selection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4): 5322-5328, 2023
- G. Li, Z. Yu, K. Yang, M. Lin, C. L. P. Chen, Exploring Feature Selection With Limited Labels: A Comprehensive Survey of Semi-Supervised and Unsupervised Approaches, IEEE Transactions on Knowledge and Data Engineering, 36(11): 6124-6144, 2024

X. Xiu, C. Huang, P. Shang, W. Liu, Bi-Sparse Unsupervised Feature Selection, arXiv:2412.16819