STAR-Net: An Interpretable Tensor Representation Network for Hyperspectral Image Denoising

Xianchao Xiu

Department of Automation

International Conference on Optimization and Statistics with Applications, June 21-23, 2024

Joint work with Jingjing Liu (SHU), Jiashun Jin (SHU) and Wanquan Liu (SYSU)

Outline

Introduction

Methodology

Experiment

Conclusion

(ロ)、(型)、(E)、(E)、 E) のQ(()

Hyperspectral image (HSI): Rich spectral and spatial information

- Board applications: Agriculture, astronomy, geosciences, medicine
- Various tasks: Denoising, classification, detection, fusion, unmixing
- https://github.com/xianchaoxiu/Hyperspectral-Imaging

Denoising

► HSI denoising/HSI restoration

- Taxonomy of existing methods
 - Model-driven: Non-local, TV, sparse coding, low-rank representation
 - Data-driven: CNN, hybrid networks, unsupervised networks
 - Model-data-driven

Tensor

► The development of "tensor hyperspectral" on Google Scholar

What are the advantages of tensor modeling?

- Excellent data representation
- Various tensor decomposition
- (possibly) Low computational complexity

Motivation

General subspace tensor representation framework

(P)
$$\min_{\mathcal{G},\mathbf{A}} \ \frac{1}{2} \|\mathcal{Y} - \mathcal{G} \times_{3} \mathbf{A}\|_{\mathrm{F}}^{2} + \lambda \Omega(\mathcal{G})$$

s.t. $\mathbf{A}^{\top} \mathbf{A} = \mathbf{I}$

Recent surveys

- Liu-Li-Wang-Tao-Du-Chanussot, SCIS, 2023
- Wang-Hong-Han-Li-Yao-Gao, IEEE GRSM, 2023

Motivation

▶ Xiong-Zhou-Tao-Lu-Zhou-Qian, IEEE TIP, 2022

Multidimentional representation

$$\phi(\mathcal{G}, \mathcal{B}_i) = \frac{1}{2} \| \mathcal{R}_i \mathcal{G} - \mathcal{B}_i \times_1 \mathbf{D}_1 \times_2 \mathbf{D}_2 \times_3 \mathbf{D}_3 \|_{\mathrm{F}}^2$$

(ロ) (型) (E) (E) (E) (O)

How to characterize priors? How to develop algorithms?

Outline

Introduction

Methodology

Experiment

Conclusion

(ロ)、(型)、(E)、(E)、 E) のQ(()

Model

Sparse tensor aided representation (STAR)

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Algorithm

Alternating direction method of multipliers (ADMM)

From iterative optimization to deep unrolling

- Gregor-LeCun, ICML, 2010
- ▶ Yang-Sun-Li-Xu, NIPS, 2016
- Monga-Li-Eldar, IEEE SPM, 2021
- Elad-Kawar-Vaksman, SIIMS, 2023

► Update *G*-block

◆□ > ◆昼 > ◆臣 > ◆臣 > ○ ● ○ ●

▶ Update \mathcal{B}_i -block

$$\begin{split} \mathcal{B}_{i}^{k+1} &= \arg\min_{\mathcal{B}_{i}} \ \frac{\lambda}{2} \|\mathcal{R}_{i}\mathcal{G}^{k+1} - \mathcal{B}_{i} \times_{1} \mathbf{D}_{1} \times_{2} \mathbf{D}_{2} \times_{3} \mathbf{D}_{3}\|_{\mathrm{F}}^{2} \\ &+ \frac{\beta}{2} \|\mathcal{L}_{i}^{k} - \mathcal{B}_{i} + \mathcal{P}_{i}^{k}/\beta\|_{\mathrm{F}}^{2} + \lambda\gamma_{1}\|\mathcal{B}_{i}\|_{1} \\ & \Downarrow \\ \mathcal{B}_{i}^{k+1} &= \arg\min_{\mathcal{B}_{i}} \ \frac{1}{2} \|(\beta \mathcal{I} + \lambda \mathcal{I} \times_{1} \mathbf{D}_{1} \times_{2} \mathbf{D}_{2} \times_{3} \mathbf{D}_{3})\mathcal{B}_{i} \\ &- (\lambda \mathcal{R}_{i}\mathcal{G}^{k+1} + \beta \mathcal{L}_{i}^{k} + \mathcal{P}_{i}^{k})\|_{\mathrm{F}}^{2} + \lambda\gamma_{1}\|\mathcal{B}_{i}\|_{1} \\ & \Downarrow \\ \mathcal{B}_{i}^{k+1} &= \mathrm{Shrink}(\mathcal{F}_{i}, \lambda\gamma_{1}/\nu) \\ & \Downarrow \\ \mathcal{B}_{i}^{k+1} &= \mathrm{sgn}(\mathcal{F}_{i})\mathrm{ReLU}(|\mathcal{F}_{i}| - \lambda\gamma_{1}/\nu) \end{split}$$

Update A-block

▶ Update \mathcal{P}_i -block

$$\mathcal{P}_{i}^{k+1} = \mathcal{P}_{i}^{k} + \beta(\mathcal{L}_{i}^{k+1} - \mathcal{B}_{i}^{k+1})$$

$$\Downarrow$$

$$\mathcal{P}_{i}^{k+1} = \text{Linear}(\Theta_{i})$$

・ロット (四)・ (目)・ (日)・ (日)

- ▶ Input: Noisy HSI \mathcal{Y} , parameters $\lambda, \beta, \gamma_1, \gamma_2, \nu$
- ▶ Initialize: $(\mathcal{G}^0, \mathcal{B}_i^0, \mathcal{L}_i^0, \mathbf{A}^0, \mathcal{P}_i^0)$
- While $k = 1, \ldots, K$ do
 - ► Update *G*-block by

 $\mathcal{G}^{k+1} = \operatorname{LargNet}(\mathcal{E}_1, \mathcal{E}_2)$

• Update \mathcal{B}_i -block by

 $\mathcal{B}_i^{k+1} = \mathrm{ShrinkNet}(\mathcal{F}_i, \lambda \gamma_1 / \nu)$

▶ Update \mathcal{L}_i -block by

 $\mathcal{L}_i^{k+1} = \operatorname{SvtNet}(\mathcal{B}_i^{k+1} - \mathcal{P}_i^k / \beta, \lambda \gamma_2 / \beta)$

Update A-block by

 $\mathbf{A}^{k+1} = \operatorname{LargNet}(\mathbf{U}, \mathbf{V}^{\top})$

• Update \mathcal{P}_i -block by

 $\mathcal{P}_i^{k+1} = \operatorname{Linear}(\Theta_i)$

▶ Output: Denoised HSI $X = G^{k+1} \times_3 \mathbf{A}^{k+1}$

Architecture

・ロト・西ト・モート ヨー うらぐ

Outline

Introduction

Methodology

Experiment

Conclusion

(ロ)、(型)、(E)、(E)、 E) のQ(()

Setup

Compared methods

- BM3D: Dabov-Katkovnik-Egiazarian, IEEE TIP, 2007
- BM4D: Maggioni-Katkovnik-Egiazarian-Foi, IEEE TIP, 2012
- LLRT: Chang-Yan-Zhong, CVPR, 2017
- LRTDTV: Wang-Chen-Han-He, RS, 2017
- ▶ NGMeet: He-Yao-Li-Yokoya-Zhao-Zhang-Zhang, IEEE TPAMI, 2022
- HSI-SDeCNN: Maffei-Haut-Paoletti-Plaza, IEEE TGRS, 2020
- SMDS-Net: Xiong-Zhou-Tao-Lu-Zhou-Qian, IEEE TIP, 2022
- RCILD: Peng-Wang-Cao-Zhao-Yao-Zhang-Meng, IEEE TGRS, 2024
- Implementation details
 - ▶ Training loss: $L = \|\text{STAR-Net}(\mathcal{Y}) \mathcal{X}\|_{\text{F}}^2$
 - Training dataset: 100 HSIs from ICVL, data augmentation
 - Testing dataset: ICVL, Washington DC Mall
 - Hyperparameters: Learning rate=0.005, batch=2, epoch=300, K=6, dictionary=[9, 9, 9]
 - Training parameters: $\lambda, \beta, \mu, \gamma_1, \gamma_2, \mathbf{D}_1, \mathbf{D}_2, \mathbf{D}_3$

Quantitative comparisons on ICVL

đ	Index	Noisy	Model-based methods				Deep learning-based methods					
0			BM3D	BM4D	LLRT	LRTDTV	NGMeet	HSI-SDeCNN	SMDS-Net	RCILD	STAR-Net	STAR-Net-S
10	PSNR ↑	29.018	37.310	42.987	39.810	43.882	42.383	41.519	46.371	42.458	47.286	47.345
	SSIM ↑	0.521	0.924	0.973	0.962	0.979	0.966	0.969	0.985	0.987	0.988	0.989
	$SAM\downarrow$	0.229	0.121	0.080	0.045	0.077	0.074	0.075	0.028	0.044	0.025	0.025
	PSNR ↑	21.591	32.582	37.630	34.250	38.245	36.791	36.840	42.337	38.514	42.435	42.500
30	SSIM ↑	0.146	0.846	0.930	0.921	0.877	0.915	0.926	0.972	0.971	0.972	0.972
	$SAM\downarrow$	0.535	0.208	0.142	0.084	0.149	0.139	0.124	0.040	0.067	0.039	0.038
	PSNR ↑	18.402	29.982	35.242	32.067	33.618	34.399	34.342	37.481	35.838	39.853	39.963
50	SSIM ↑	0.042	0.790	0.888	0.899	0.862	0.887	0.893	0.907	0.951	0.956	0.956
	$SAM\downarrow$	0.779	0.264	0.190	0.107	0.195	0.177	0.134	0.066	0.092	0.050	0.047
	PSNR ↑	18.126	28.654	33.586	30.746	30.565	32.389	32.794	37.197	33.980	37.342	38.237
70	SSIM ↑	0.038	0.742	0.844	0.852	0.762	0.858	0.855	0.923	0.930	0.943	0.943
	$SAM\downarrow$	0.897	0.310	0.231	0.214	0.304	0.217	0.186	0.066	0.132	0.058	0.055
Ave.	PSNR ↑	21.784	32.132	37.361	34.218	36.578	36.490	36.374	40.463	37.212	41.729	42.011
	SSIM ↑	0.187	0.826	0.909	0.909	0.870	0.907	0.911	0.943	0.953	0.965	0.965
	$SAM\downarrow$	0.610	0.226	0.161	0.113	0.181	0.152	0.130	0.050	0.077	0.043	0.041

(g) NGMeet

(h) HSI-SDeCNN

(j) RCILD

(k) STAR-Net

(i) SMDS-Net

(1) STAR-Net-S

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Quantitative comparisons on WDC

đ	Index	Noisy	Model-based methods				Deep learning-based methods					
0			BM3D	BM4D	LLRT	LRTDTV	NGMeet	HSI-SDeCNN	SMDS-Net	RCILD	STAR-Net	STAR-Net-S
10	PSNR ↑	28.561	36.142	38.435	39.540	40.887	42.712	40.756	43.616	28.968	46.173	46.410
	SSIM ↑	0.522	0.923	0.946	0.966	0.909	0.978	0.937	0.961	0.972	0.980	0.982
	SAM ↓	0.738	0.338	0.271	0.265	0.236	0.200	0.304	0.066	0.215	0.043	0.042
	PSNR ↑	20.897	30.869	32.793	32.681	38.887	37.391	36.710	39.498	22.509	39.924	39.950
30	SSIM ↑	0.150	0.784	0.834	0.858	0.888	0.854	0.832	0.916	0.882	0.923	0.928
	SAM ↓	1.020	0.519	0.445	0.387	0.335	0.260	0.399	0.085	0.243	0.083	0.083
	PSNR ↑	17.778	28.882	30.901	30.470	35.250	36.160	35.062	36.014	22.160	36.731	37.280
50	SSIM ↑	0.066	0.702	0.770	0.789	0.813	0.793	0.771	0.834	0.872	0.852	0.871
	SAM ↓	1.164	0.603	0.528	0.433	0.504	0.340	0.446	0.124	0.263	0.122	0.121
	PSNR ↑	16.966	27.694	30.140	29.159	34.198	35.110	32.891	35.315	21.262	35.964	36.286
70	SSIM ↑	0.051	0.657	0.740	0.761	0.776	0.761	0.602	0.811	0.857	0.831	0.843
	SAM ↓	1.205	0.652	0.560	0.433	0.547	0.500	0.980	0.135	0.290	0.130	0.129
Ave.	PSNR ↑	21.051	30.897	33.067	32.962	37.305	37.843	36.355	38.611	23.725	39.698	39.982
	SSIM ↑	0.197	0.766	0.823	0.844	0.847	0.846	0.786	0.881	0.896	0.897	0.906
	SAM ↓	1.032	0.528	0.451	0.380	0.406	0.325	0.532	0.102	0.253	0.095	0.094

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Real-world

Case study on Indian Pines

(a) Noisy

(d) LLRT

(e) LRTDTV

(f) NGMeet

(g) HSI-SDeCNN

mid

(h) SMDS-Net

(d) LLRT

(i) RCILD

(i) STAR-Net

(f) NGMeet

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

(a) Noisy

Real-world

Classification

(g) NGMeet

(h) HSI-SDeCNN (i) SMDS-Net

(j) RCILD

(k) STAR-Net

(1) STAR-Net-S

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

Discussion

Number of parameters

Methods	HSI-SDeCNN	SMDS-Net	RCILD	STAR-Net	STAR-Net-S
#Parameters	1,892,100	5,103	2,892,288	27,702	28,487

Average runtime

Methods	HSI-SDeCNN	SMDS-Net	RCILD	STAR-Net	STAR-Net-S
Time	11.027	293.606	30.706	233.106	238.366

Impact of unrolling iterations

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

Outline

Introduction

Methodology

Experiment

Conclusion

(ロ)、(型)、(E)、(E)、 E) のQ(()

Conclusion

- What have we done?
 - How to characterize priors? \Rightarrow Tensor + non-local self-similarity
 - ► How to develop algorithms? ⇒ ADMM + deep unrolling

Dataset	Index	Noisy	HSI-SDeCNN	SMDS-Net	RCILD	STAR-Net	STAR-Net-S
	PSNR ↑	18.402	34.342	37.481	35.838	39.853	39.963
ICVL	SSIM ↑	0.042	0.893	0.907	0.951	0.956	0.956
	SAM ↓	0.779	0.134	0.066	0.092	0.050	0.047
Deep unrolling		-	×	\checkmark	×	\checkmark	\checkmark
Non-loca	l self-similarity	-	×	×	×	\checkmark	\checkmark

Thank you for your attention!

xcxiu@shu.edu.cn

References

- W. He, Q. Yao, C. Li, N. Yokoya, Q. Zhao, Non-Local Meets Global: An Integrated Paradigm for Hyperspectral Denoising, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6861-6870, 2019
- V. Monga, Y. Li, Y. C. Eldar, Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing, IEEE Signal Processing Magazine, 38: 18-44, 2021
- F. Xiong, J. Zhou, S. Tao, J. Lu, J. Zhou, Y. Qian, SMDS-Net: Model Guided Spectral-Spatial network for Hyperspectral Image Denoising, IEEE Transactions on Image Processing, 31: 5469-5483, 2022
- L. Zhuang, M. K. Ng, FastHyMix: Fast and Parameter-Free Hyperspectral Image Mixed Noise Removal, IEEE Transactions on Neural Networks and Learning Systems, 34: 4702-4716, 2023
- J. Peng, H. Wang, X. Cao, Q. Zhao, J. Yao, H. Zhang, D. Meng, Learnable Representative Coefficient Image Denoiser for Hyperspectral Image, IEEE Transactions on Geoscience and Remote Sensing, 62: 1-16, 2024