Nonconvex Sparse Optimization and Algorithms

Xianchao Xiu

Department of Automation

Chinese Academy of Sciences, December 12, 2024

Joint work with Wanquan Liu (SYSU), Lingchen Kong (BJTU) and others

Outline

Introduction

First-Order Algorithms

Second-Order Algorithms

Future Work

Sparse Optimization

Sparse optimization considers

- x can be extended to matrices and tensors
- f(x) may be nonsmooth even nonconvex
- ▶ $||x||_0$ counts the number of nonzeros
- \blacktriangleright λ and s are parameters
- Also called compressed sensing and variable selection
- Broad applications in machine learning, pattern recognition and engineering
- https://github.com/xianchaoxiu/Sparse-Optimization

Algorithms

- Convex algorithms
 - Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series B, 1996
 - Candès-Tao, Decoding by linear programming, IEEE TIT, 2005
 - ► Donoho, Compressed sensing, IEEE TIT, 2006
- Nonconvex algorithms
 - Fan-Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 2001
 - Chen-Xu-Ye, Lower bound theory of nonzero entries in solutions of $\ell_2 \ell_p$ minimization, SIAM Journal on Scientific Computing, 2010
 - Xu-Chang-Xu-Zhang, L_{1/2} regularization: A thresholding representation theory and a fast solver, IEEE TNNLS, 2012
- Direct algorithms
 - Blumensath-Davies, Iterative hard thresholding for compressed sensing, Applied and Computational Harmonic Analysis, 2009
 - Foucart, Hard thresholding pursuit: An algorithm for compressive sensing, SIAM Journal on Numerical Analysis, 2011
 - Yuan-Li-Zhang, Gradient hard thresholding pursuit, JMLR, 2018

More

- Bach-Jenatton-Mairal-Obozinski, Optimization with sparsity-inducing penalties, Foundations and Trends in Machine Learning, 2012
- Jain-Kar, Non-convex optimization for machine learning, Foundations and Trends in Machine Learning, 2017
- Hastie-Tibshirani-Wainwright, Statistical learning with sparsity: The Lasso and generalizations, CRC Press, 2015
- Zhao, Sparse optimization theory and methods, CRC Press, 2018
- Fan-Li-Zhang-Zou, Statistical foundations of data science, CRC Press, 2020
- Wright-Ma, High-dimensional data analysis with low-dimensional models: Principles, computation, and applications, Cambridge University Press, 2022
- Parhi-Nowak, Deep learning meets sparse regularization: A signal processing perspective, IEEE Signal Processing Magazine, 2023
- Tillmann-Bienstock-Lodi-Schwartz, Cardinality minimization, constraints, and regularization: A survey, SIAM Review, 2024

Outline

Introduction

First-Order Algorithms

Second-Order Algorithms

Future Work

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Xiu-Kong-Li-Qi, Computational Optimization and Applications, 2018

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_1 + \lambda \|x\|_p^p \ (0$$

\triangleright Consider the following ϵ -approximations

where

$$h_{u_{\epsilon}}(x_i) = \min_{0 \le s \le u_{\epsilon}} p\left(|x_i|s - \frac{p-1}{p}s^{\frac{p}{p-1}}\right), \quad u_{\epsilon} = \left(\frac{\epsilon}{\lambda n}\right)^{\frac{p-1}{p}}$$

• (Definition) We say that $x^* \in \mathbb{R}^n$ is a generalized first-order stationary point of (1) if

$$0\in (A^ op ext{sgn}(Ax^*-b))_i x_i^*+\lambda p |x_i^*|^p, \hspace{0.2cm} i=1,2,\cdots,n$$

Furthermore, the following statement holds

$$|\mathbf{x}_i^*| \geq (\frac{\lambda p}{\|A_i\|_1})^{\frac{1}{1-p}}, \quad \forall i \in T$$
(3)

• (Lower Bound) Let ϵ be a constant such that

$$0 < \epsilon < \lambda n \left(\frac{\|A_i\|_1}{\lambda p}\right)^{\frac{p}{p-1}} \tag{4}$$

Suppose that x^* is a generalized first-order stationary point of (2). Then, x^* is also a generalized first-order stationary point of (1). Moreover, the nonzero entries of x^* satisfy the lower bound property (3).

(Convergent Theorem) Assume that ε satisfies (4) and set q as ¹/_p + ¹/_q = 1. Suppose that x* is an accumulation point of {x^k}. Then x* is a generalized first-order stationary point of (1). Moreover, the nonzero entries of x* satisfy the lower bound (3).

Choose an arbitrary $x^0 \in \mathbb{R}^n$ and ϵ such that (4) holds. Set k = 01) Solve the weighted ℓ_1 minimization problem $x^{k+1} \in \operatorname{argmin}_x \left\{ ||Ax - b||_1 + \lambda p \sum_{i=1}^n s_i^k |x_i| \right\}$ where $s_i^k = \min \left\{ \left(\frac{\epsilon}{\lambda n}\right)^{\frac{1}{q}}, |x_i^k|^{\frac{1}{q-1}} \right\}$ for all i2) Set $k \leftarrow k + 1$ and go to step 1) End

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Comparison with FISTA

т	n	FISTA	Alg. 2	Alg. 3	Alg. 4	FISTA	Alg. 2	Alg. 3	Alg. 4
100	500	11.1587	0.0455	0.0303	0.0223	0.0008	0.4183	0.3087	0.2453
200	1000	8.6122	0.2097	0.1518	0.1279	0.0020	0.1413	0.0564	0.0484
300	1500	2.0159	0.1498	0.1195	0.1079	0.0067	0.2095	0.1293	0.1265
400	2000	2.3528	0.1057	0.0877	0.0799	0.1093	0.3648	0.2905	0.2791
500	2500	1.1584	0.1672	0.1491	0.1091	0.0310	0.4761	0.4799	0.4583
600	3000	0.9855	0.0972	0.0972	0.0972	0.0386	0.9324	0.7700	0.7684
700	3500	1.1239	0.0947	0.0940	0.0872	0.0756	1.7057	1.6983	1.5231
800	4000	0.8065	0.0958	0.0924	0.0861	0.1598	2.5905	2.4271	2.3562
900	4500	0.8734	0.0982	0.0981	0.0823	0.1546	3.3103	3.2272	3.2263
1000	5000	1.1301	0.0942	0.0912	0.0851	0.1937	4.0071	3.9719	4.1359

Fused Regression

Xiu-Liu-Li-Kong, Computational Statistics & Data Analysis, 2019

$$\min_{\beta} \quad \frac{1}{2} \|y - X\beta\|^2 + \Phi_{\tau_1}(\beta) + \sum_{i=1}^{p} \Phi_{\tau_2}(\beta_{i+1} - \beta_i)$$

- Φ_{τ1} and Φ_{τ2} can be the same or different
 Nonconvex penalty functions: ℓ_p, SCAD, MCP, capped ℓ₁
- For notational simplicity, define

$$\min_{\beta} \quad \frac{1}{2} \|y - X\beta\|^2 + \Phi_{\tau_1}(\beta) + \Phi_{\tau_2}(D\beta)$$

with

$$D = \begin{pmatrix} -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{pmatrix} \in \mathbb{R}^{(p-1) \times p}$$

Fused Regression

 Alternating direction method of multipliers (ADMM)

$$\begin{array}{ll} \min_{\alpha,\gamma,\beta} & \frac{1}{2} \|y - X\beta\|^2 + \Phi_{\tau_1}(\alpha) + \Phi_{\tau_2}(\gamma) \\ \text{s.t.} & \alpha = \beta \\ & \gamma = D\beta \end{array}$$

(Convergent Theorem) Suppose that
 {(α^k, γ^k, β^k, w₁^k, w₂^k)} is a generated
 sequence. Then the sequence
 converges to a stationary point.

Recovery results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Sparse LDA

► Liu-Feng-Xiu-Liu, Pattern Recognition, 2024

Sparse LDA

Model stability

(d) NEU

(e) Caltech

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline

Introduction

First-Order Algorithms

Second-Order Algorithms

Future Work

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Sparse CCA

Xiu-Yang-Kong-Liu, Applied Mathematics and Computation, 2020

$$\begin{split} \min_{\boldsymbol{\beta},\boldsymbol{\theta}} & -\boldsymbol{\beta}^{\top}\boldsymbol{X}^{\top}\boldsymbol{Y}\boldsymbol{\theta} + \lambda \|\boldsymbol{\beta}\|_{1} + \mu \|\boldsymbol{\theta}\|_{1} \\ \text{s.t.} & \|\boldsymbol{X}\boldsymbol{\beta}\|^{2} \leq 1, \ \|\boldsymbol{Y}\boldsymbol{\theta}\|^{2} \leq 1 \end{split}$$

- Alternating minimization algorithm (AMA)
 - \blacktriangleright Update β by

$$\min_{\beta} \quad -\beta^{\top} X^{\top} Y \theta + \lambda \|\beta\|_{1}$$
s.t.
$$\|X\beta\|^{2} \leq 1$$
(5)

b Update θ by

$$\min_{\theta} \quad -\beta^{\top} X^{\top} Y \theta + \mu \|\theta\|_{1}$$
 s.t.
$$\|Y\theta\|^{2} \le 1$$

・ロット (四)・ (目)・ (日)・ (日)

Sparse CCA

▶ The dual optimization problem of (5) is

$$\begin{split} \min_{\substack{\alpha,\gamma \\ \alpha,\gamma \\ \beta}} & \frac{1}{2} \|\alpha - Y\theta\|^2 + \delta_{\lambda B_{\infty}}(\gamma) \\ \text{s.t.} & X^{\top} \alpha - \gamma = 0 \\ & \downarrow \\ \mathcal{L}_{\delta}(\alpha,\gamma;\beta) = \frac{1}{2} \|\alpha - Y\theta\|^2 + \delta_{\lambda B_{\infty}}(\gamma) - \beta^{\top} (X^{\top} \alpha - \gamma) + \frac{\delta}{2} \|X^{\top} \alpha - \gamma\|^2 \end{split}$$

First apply a semi-smooth Newton method for solving

$$(\alpha^{k+1}, \gamma^{k+1}) = \arg\min_{\alpha, \gamma} \{\mathcal{L}_{\delta}(\alpha, \gamma; \beta^{k})\}$$

Then update the Lagrange multiplier by

$$\beta^{k+1} = \beta^k - \tau \delta_k (X^\top \alpha^{k+1} - \gamma^{k+1})$$

• (Convergent Theorem) The generated sequence $\{(\beta^k, \theta^k)\}$ converges to a stationary point.

Generalized CCA

► Li-Xiu-Liu-Miao, IEEE Signal Processing Letters, 2022

$$\min_{U, P_{v}} \sum_{v=1}^{M} \|U - X_{v} P_{v}\|_{F}^{2}$$

s.t. $U^{\top} U = I_{d}, \ \|P_{v}\|_{2,0} \leq s_{v}$

Alternating minimization algorithm (AMA)

• Update
$$U^{k+1}$$
 by

$$\min_{U} \sum_{v=1}^{M} \|U - X_v P_v^k\|_F^2$$
s.t. $U^\top U = I_d$

• Update
$$P_v^{k+1}(v = 1, ..., M)$$
 by

$$\min_{P_v} \sum_{v=1}^M \|U^{k+1} - X_v P_v\|_F^2$$
s.t. $\|P_v\|_{2,0} \le s_v$
(6)

Generalized CCA

• Denote
$$f(P_v) := \|U^{k+1} - X_v P_v\|_F^2$$
. Then
 $\nabla f(P_v) = 2X_v^\top (X_v P_v - U^{k+1}), \quad \nabla^2 f(P_v) = 2I_d \otimes X_v^\top X_v$

• The α_v -stationary point of (6) can be given by

$$P_{v} = \prod_{\mathcal{S}} (P_{v} - \alpha_{v} \nabla f(P_{v}))$$
$$\Downarrow$$

$$0 = P_{v} - \Pi_{\mathcal{S}}(P_{v} - \alpha_{v}\nabla f(P_{v}))$$

= $\begin{pmatrix} (P_{v})_{T_{v}} \\ (P_{v})_{\overline{T}_{v}} \end{pmatrix} - \begin{pmatrix} (P_{v})_{T_{v}} - \alpha_{v}\nabla_{T_{v}}f(P_{v}) \\ 0 \end{pmatrix}$
= $\begin{pmatrix} \alpha_{v}\nabla_{T_{v}}f(P_{v}) \\ (P_{v})_{\overline{T}_{v}} \end{pmatrix}$

Newton hard thresholding pursuit (NHTP)

Generalized CCA

Runtime comparison

Problem Scale	GCCA	SGCCA	SCGCCA
(1,000;300;300;300)	0.04	0.04	0.01
(5,000;300;300;300)	0.23	0.28	0.03
(10,000;300;300;300)	0.40	0.41	0.07
(50,000;300;300;300)	2.32	2.27	0.34
(100,000;300;300;300)	4.58	4.35	0.66
(1,000;1,500;1,500;1,500)	0.42	0.40	0.02
(5,000;1,500;1,500;1,500)	1.35	1.16	0.12
(10,000;1,500;1,500;1,500)	2.63	2.24	0.24
(50,000;1,500;1,500;1,500)	13.21	10.56	1.18
(100,000;1,500;1,500;1,500)	26.60	22.53	2.35
(1,000;3,000;3,000;3,000)	1.53	1.58	0.17
(5,000;3,000;3,000;3,000)	3.92	3.49	0.23
(10,000;3,000;3,000;3,000)	6.87	5.65	0.45
(50,000;3,000;3,000;3,000)	32.02	23.18	2.29
(100,000;3,000;3,000;3,000)	667.69	629.54	4.91

Extracted feature comparison

▶ Qu-Chen-Xiu-Liu, Neurocomputing, 2024

- (Lemma) Let (*Ỹ**, {*X̃*_i*}) be the (local) minimizer of (8). Then there exists μ_ε > 0 such that *Ỹ** is an ε-(local) minimizer of (7) for any μ ≥ μ_ε.
- (Definition) We say $(Y^*, \{X_i^*\}, \{\Lambda_i^*\})$ is a KKT point of (8) if it satisfies

$$\left\{egin{aligned} 0\in
abla g(Y^*)+\sum_{i=1}^d\Lambda^*_i+\mathcal{N}_\mathcal{S}(Y^*)\ 0=
abla f_i(X^*_i)-\Lambda^*_i,\ orall i\in [d]\ 0=X^*_i-Y^*,\ orall i\in [d] \end{aligned}
ight.$$

(Definition) We say (Y*, {X_i*}, {Λ_i*}) is a stationary point of (8) if there exists α > 0 such that

$$\left\{egin{aligned} &Y^* = \mathcal{P}_{\mathcal{S}}(Y^* - lpha(
abla g(Y^*) + \sum_{i=1}^d \Lambda_i^*)) \ &0 =
abla f_i(X_i^*) - \Lambda_i^*, \ orall i \in [d] \ &0 = X_i^* - Y^*, \ orall i \in [d] \end{aligned}
ight.$$

Coptimal Conditions) Suppose that (Y*, {X_i*}) is a local minimizer of (8). Then, there exists Λ_i* (i ∈ [d]) such that (Y*, {X_i*}, {Λ_i*}) is a KKT point of (8).

Nonincreasing Lemma) Let {(Y^k, {X_i^k}, {Λ_i^k})} be the generated sequence and β ≥ √2r. Then the generated augmented Lagrangian sequence is nonincreasing, i.e.,

$$\mathcal{L}_{m{eta}}(Y^{k+1}, \{X^{k+1}_i\}; \{\Lambda^{k+1}_i\}) \leq \mathcal{L}_{m{eta}}(Y^k, \{X^k_i\}; \{\Lambda^k_i\})$$

• (Bounded Lemma) Suppose that $\beta \ge 2r$ holds. Then the sequence $\{(Y^k, \{X_i^k\}, \{\Lambda_i^k\})\}$ is bounded. Moreover, it satisfies

$$\begin{cases} \lim_{k \to \infty} \|Y^{k+1} - Y^k\|_F = 0\\ \lim_{k \to \infty} \|X^{k+1}_i - X^k_i\|_F = 0, \ \forall i \in [d]\\ \lim_{k \to \infty} \|\Lambda^{k+1}_i - \Lambda^k_i\|_F = 0, \ \forall i \in [d] \end{cases}$$

• (Convergent Theorem) Let $\{(Y^k, \{X_i^k\}, \{\Lambda_i^k\})\}$ be the generated sequence and $\beta \ge 2r$. Then, any accumulation point $(Y^*, \{X_i^*\}, \{\Lambda_i^*\})$ is a stationary point of (8).

Runtime comparison

Dataset	DPLAM	DPCPG	DESTINY	DREAM
YALE	0.13	0.09	0.04	0.02
ORL	1.19	0.593	0.57	0.22
CAR	2.10	1.64	1.53	0.82
AR	2.83	2.19	2.01	1.71
Vegetable	3.60	2.95	2.50	2.29
CIFAR-10	4.79	3.64	3.74	2.94

Classification accuracy

うせん 前 ふばやふばやふむやる

Outline

Introduction

First-Order Algorithms

Second-Order Algorithms

Future Work

Deep Unfolding Networks

- ► Gregor-LeCun, Learning fast approximations of sparse coding, ICML, 2010
- Zhang-Ghanem, ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing, CVPR, 2018
- Chen-Liu-Yin, Learning to optimize: A tutorial for continuous and mixed-integer optimization, Science China Mathematics, 2024

Large Language Models

- > Yang-Wang-Lu et al., Large language models as optimizers, ICLR, 2024
- AhmadiTeshnizi-Gao-Udell, OptiMUS: Scalable optimization modeling with (MI) LP solvers and large language models, ICML, 2024
- Romera-Barekatain-Novikov et al., Mathematical discoveries from program search with large language models, Nature, 2024

References

- Liu-Feng-Xiu-Liu, Towards robust and sparse linear discriminant analysis for image classification, Pattern Recognition, 2024
- Qu-Chen-Xiu-Liu, Distributed sparsity constrained optimization over the Stiefel manifold, Neurocomputing, 2024
- Li-Xiu-Liu-Miao, An efficient Newton-based method for sparse generalized canonical correlation analysis, IEEE Signal Processing Letters, 2022
- Xiu-Yang-Kong-Liu, tSSNALM: A fast two-stage semi-smooth Newton augmented Lagrangian method for sparse CCA, Applied Mathematics and Computation, 2020
- Xiu-Liu-Li-Kong, Alternating direction method of multipliers for nonconvex fused regression problems, Computational Statistics & Data Analysis, 2019
- Xiu-Kong-Li-Qi, Iterative reweighted methods for l₁ l_p minimization, Computational Optimization and Applications, 2018