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FD

▶ Fault diagnosis (FD) is one of the research hotspots in industrial engineering

▶ Model-based fault diagnosis techniques: design schemes, algorithms, and tools, 2008

▶ Data-driven design of fault diagnosis and fault-tolerant control systems, 2014

▶ Advanced methods for fault diagnosis and fault-tolerant control, 2021

https://link.springer.com/book/10.1007/978-1-4471-4799-2
https://link.springer.com/book/10.1007/978-1-4471-6410-4
https://link.springer.com/book/10.1007/978-3-662-62004-5


PCA

▶ Principal component analysis (PCA)

min
A

1

2
∥X − AA⊤X∥2F

s.t. A⊤A = I

min
A

− Tr(A⊤X⊤XA)

s.t. A⊤A = I

▶ Sparse principal component analysis (SPCA)

min
A

1

2
∥X − AA⊤X∥2F + λ∥A∥2,1

s.t. A⊤A = I

min
A

− Tr(A⊤X⊤XA) + λ∥A∥2,1

s.t. A⊤A = I

▶ Pearson, Philos Mag, 1901

▶ Zou-Hastie-Tibshirani, Journal of Computational and Graphical Statistics, 2006

▶ Gewers-Ferreira-Arruda-Silva-Comin-Amancio-Costa, ACM Computing Surveys, 2021

▶ Greenacre-Groenen-Hastie-Markos-Tuzhilina, Nature Reviews Methods Primers, 2022



PCA

▶ Liu-Zhang-Xu, JPC, 2017

▶ Liu-Zeng-Xie-Luo-Su, IEEE TII, 2019



CCA

▶ Canonical correlation analysis (CCA)

min
A,B

1

2
∥XA− YB∥2F

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

min
A,B

− Tr(A⊤X⊤YB)

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

▶ Hotelling, Biometrika, 1936

▶ Yang-Liu-Liu-Tao, IEEE TKDE, 2021



CCA
▶ Statistics

▶ Witten-Tibshirani-Hastie, Extensions of sparse canonical correlation analysis with
applications to genomic data, Biostatistics, 2009

▶ Andrew-Arora-Bilmes-Livescu, Deep canonical correlation analysis, ICML, 2013
▶ Lindenbaum-Salhov-Averbuch-Kluger, ℓ0-sparse canonical correlation analysis, ICML, 2022

▶ Optimization
▶ Chu-Liao-Ng-Zhan, Sparse canonical correlation analysis: New formulation and algorithm,

IEEE TPAMI, 2013
▶ Chen-Ma-Xue-Zou, An alternating manifold proximal gradient method for sparse principal

component analysis and sparse canonical correlation analysis, IJOO, 2020
▶ Li-Xiu-Liu-Miao, An efficient Newton-based method for sparse generalized canonical

correlation analysis, IEEE SPL, 2022

▶ Machine Learning
▶ Chu-Liao-Ng-Zhan, Sparse canonical correlation analysis: New formulation and algorithm,

IEEE TPAMI, 2013
▶ Sun-Xiu-Luo-Liu, Learning high-order multi-view representation by new tensor canonical

correlation analysis, IEEE TCSVT, 2023
▶ Zhou-Ataee-Hou-Tong-X-Feng-Long-Shen, Fair canonical correlation analysis, NeurIPS, 2024



CCA

▶ Chen-Ding-Zhang-Li-Hu, CEP, 2016

▶ Chen-Ding-Peng-Yang-Gui, IEEE TIE, 2018



Motivation

▶ PCA v.s. CCA

▶ What shall we do
▶ How to improve performance?
▶ How to develop efficient algorithms?
▶ How to apply to industrial engineering?
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Robust PCA

▶ Xiu-Yang-Kong-Liu, JPC, 2020

min
A,B

1

2
∥X − XBA⊤∥2F + λ1∥B∥2,1

s.t. A⊤A = I

⇓

min
A,B,E

1

2
∥X − XBA⊤−E∥2F + λ1∥B∥2,1 + λ2∥E∥1 + λ3Tr(B

⊤LhB)

s.t. A⊤A = I

▶ Alternating direction method of multipliers (ADMM)

min
A,C ,D,E ,B

1

2
∥X − XCA⊤ − E∥2F + λ1∥D∥2,1 + λ2∥E∥1 + λ3Tr(B

⊤LhB)

s.t. A⊤A = I , B = C , B = D



Robust PCA

▶ Fault detection rate (FDR) ▶ Monitoring results for Fault 10



Sparse constrained PCA

▶ Xiu-Yang-Kong-Liu, DDCLS, 2020 / Xiu-Miao-Liu, IEEE TII, 2023

min
A,B

1

2
∥X − XBA⊤∥2F + λ1∥B∥2,1

s.t. A⊤A = I

⇓

min
A,B

1

2
∥X − XBA⊤∥2F + λTr(B⊤LB)

s.t. A⊤A = I , ∥B∥2,0 ≤ s

▶ Alternating direction method of multipliers (ADMM)

▶ Two-stage monitoring framework
▶ Perform fault detection using residual generators
▶ Do fault isolation by shrinking the sparsity level s



Sparse constrained PCA

▶ Simulation examples ▶ Application on the cylinder-piston process



Sparse CCA

▶ Xiu-Yang-Kong-Liu, TCSII, 2021

min
A,B

1

2
∥XA− YB∥2F

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

⇓
min
A,B

1

2
∥XA− YB∥2F + λ1∥A∥2,1 + λ2∥B∥2,1

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

⇓
min
A,B

1

2
∥XA− YB∥2F + λ1∥A∥2,1 + λ2∥B∥2,1 + µ1Tr(A

⊤L1A) + µ2Tr(B
⊤L2B)

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

▶ Alternating minimization algorithm (AMA)

▶ The generated sequence {(Ak ,Bk)} converges to a local minimizer



Sparse CCA

▶ Offline modeling
▶ Normalize the training

datasets
▶ Compute the projections using

SISCCA
▶ Determine the control limit

and construct detection logic

▶ Online monitoring
▶ Normalize the testing datasets
▶ Calculate the monitoring

statistics
▶ Make a decision according to

the detection logic

▶ Monitoring results of FDR and FAR



Sparse constrained CCA

▶ Xiu-Miao-Liu, IEEE TNNLS, 2024

min
A,B

− Tr(A⊤X⊤YB)

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

⇓

min
A,B

− Tr(A⊤X⊤YB)

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

∥A∥2,0 ≤ s1, ∥B∥2,0 ≤ s2

▶ Alternating minimization algorithm (AMA) + Manifold optimization

min
A,B,C ,D

− 1

N
Tr(C⊤D) +

β

2
∥XA− C∥2F +

β

2
∥YB − D∥2F

s.t. ∥A∥2,0 ≤ s1, ∥B∥2,0 ≤ s2

C⊤C = I , D⊤D = I



Sparse constrained CCA

▶ Suppose that {Ak} is a generated sequence and X has an upper restricted isometry
constant C2s1 . Whenever 0 < αk ≤ 1

C2s1
+σ , it holds that

G (Ak+1) ≤ G (Ak)− σ

2
∥Ak+1 − Ak∥2F .

When k → ∞, it derives that ∥Ak+1 − Ak∥F → 0 and ∥(∇G (Ak))supp(Ak )∥F → 0.

▶ Suppose that {C k} is a generated sequence. Then there exist γ̄1 > 0 and β̄ > 0 such that

H(C k+1)− H(C k) ≤ −β̄∥V k∥2F .

▶ Suppose that {(Ak ,Bk ,C k ,Dk)} is a sequence generated. Moreover, X and Y satisfy
SRIP with constants C2s1 , c2s1 and C2s2 , c2s2 , respectively. Then the sequence converges to
a stationary point. Further, our algorithm returns an ϵ-stationary point in at most

⌊(F (A0,B0,C 0,D0)− F ∗)/((σ̄1 + σ̄2 + 2β̄)ϵ)⌋+ 1

iterations, where F ∗ denotes a lower bound with σ̄1, σ̄2, and β̄ being constants.



Kernel CCA

▶ Xiu-Li, IEEE JSEN, 2023

min
A,B

− Tr(A⊤X⊤YB)

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

∥A∥2,0 ≤ s1, ∥B∥2,0 ≤ s2

⇓
min
A,B

− Tr(A⊤K⊤
X KYB) + λ1Tr(A

⊤L1A) + λ2Tr(B
⊤L2B)

s.t. A⊤K⊤
X KXA = I , B⊤K⊤

Y KYB = I

∥A∥2,0 ≤ s1, ∥B∥2,0 ≤ s2

▶ Note that KX = ⟨ΦX ,ΦX ⟩ = [κX (xi , xj)]ni,j=1, KY = ⟨ΦY ,ΦY ⟩ = [κY (yi , yj)]ni,j=1

▶ Alternating direction method of multipliers (ADMM)?

▶ Alternating minimization algorithm (AMA)?



Kernel CCA

▶ First, compute the classical KCCA to get a good initial point

A = argmin
A

1

2
∥KXA− TX∥2F

B = argmin
B

1

2
∥KYB − TY ∥2F

▶ Next, solve the sparse and graph constrained problems

▶ Update A

min
A

1

2
∥KXA− TX∥2F + λ1Tr(A

⊤L1A)

s.t. ∥A∥2,0 ≤ s1

▶ Update B

min
B

1

2
∥KYB − TY ∥2F + λ2Tr(B

⊤L2B)

s.t. ∥B∥2,0 ≤ s2



Outline

Introduction

Sparse Representation

Deep Learning

Future Work



Deep CCA

▶ Xiu-Miao-Yang-Liu, IEEE TII, 2022

min
A,B

− Tr(A⊤X⊤YB)

s.t. A⊤X⊤XA = I , B⊤Y⊤YB = I

∥A∥2,0 ≤ s1, ∥B∥2,0 ≤ s2

⇓

min
A,B

− Tr(A⊤f (X )g(Y )⊤B)

s.t. A⊤f (X )f (X )⊤A = I , B⊤g(Y )g(Y )⊤B = I

∥A∥2,0 ≤ s1, ∥B∥2,0 ≤ s2

▶ Loss is defined as

−Tr(A⊤f (X )g(Y )⊤B) +
1

2

N∑
i=1

∥xi − p(f (xi ))∥2 +
1

2

N∑
i=1

∥yi − q(g(yi ))∥2



Deep CCA

▶ Monitoring results of FDR and FAR ▶ Detection time

▶ Monitoring performance

▶ Average comparison



Dual RNN

▶ Xiu-Zhang-Guo-Liu-Yang, IEEE TIM, 2024



Dual RNN

▶ Monitoring results of FDR ▶ Probability plots



Deep TL

▶ Yu, Master’s Thesis, 2024

▶ Deep joint probability adaptation network (DJPAN) + AlexNet / ResNet50

▶ Loss is defined as

min
Θ

1

n

n∑
i=1

J(θ(xS,i ), yS,i ) + λ
∑
l∈L

dL(Dl
S ,Dl

T )



Deep TL

▶ Data processing ▶ Transfer accuracy
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Future Work

▶ Deep CCA for FD
▶ Chen-Liang-Ding-Yang-Peng-Yuan, A comparative study of deep neural network-aided

canonical correlation analysis-based process monitoring and fault detection methods, IEEE
TNNLS, 2022

▶ Song-Zheng-Jin-Shi-Tao-Tan, A fault-targeted gated recurrent unit-canonical correlation
analysis method for incipient fault detection, IEEE TII, 2024

▶ Deep transfer learning for FD
▶ Zhao-Zhang-Yu-Sun-Wang-Yan-Chen, Applications of unsupervised deep transfer learning to

intelligent fault diagnosis: A survey and comparative study, IEEE TIM, 2021
▶ Chen-Yang-Xue-Huang-Ferrero-Wang, Deep transfer learning for bearing fault diagnosis: A

systematic review since 2016, IEEE TIM, 2023

▶ Large language models for FD
▶ Zheng-Pan-Liu-Chen, Empirical study on fine-tuning pre-trained large language models for

fault diagnosis of complex systems, RESS, 2024
▶ Zhang-Xu-Li-Sun-Bao-Zhang, LLM-TSFD: An industrial time series human-in-the-loop fault

diagnosis method based on a large language model, ESA, 2025
▶ Tao-Liu-Ning-Cao-Huang-Lu, LLM-based framework for bearing fault diagnosis, MSSP, 2025
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