Data-Driven Fault Diagnosis: From Sparse Representation To Deep Learning

Xianchao Xiu

Department of Automation

Mathematical Optimization Society, May 12-14, 2023

Joint work with Ying Yang (PKU), Wanquan Liu (SYSU) and others

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline

Introduction

Sparse Representation

Deep Learning

Future Work

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Fault diagnosis (FD) is one of the research hotspots in industrial engineering

- Model-based fault diagnosis techniques: design schemes, algorithms, and tools, 2008
- Data-driven design of fault diagnosis and fault-tolerant control systems, 2014
- Advanced methods for fault diagnosis and fault-tolerant control, 2021

Principal component analysis (PCA)

$$\min_{A} \quad \frac{1}{2} \| X - AA^{\top}X \|_{F}^{2}$$

s.t. $A^{\top}A = I$

 $\begin{array}{ll} \min_{A} & -\operatorname{Tr}(A^{\top}X^{\top}XA) \\ \text{s.t.} & A^{\top}A = I \end{array}$

Sparse principal component analysis (SPCA)

- Pearson, Philos Mag, 1901
- Zou-Hastie-Tibshirani, Journal of Computational and Graphical Statistics, 2006
- Gewers-Ferreira-Arruda-Silva-Comin-Amancio-Costa, ACM Computing Surveys, 2021
- Greenacre-Groenen-Hastie-Markos-Tuzhilina, Nature Reviews Methods Primers, 2022

PCA

► Liu-Zhang-Xu, JPC, 2017

Compressive sparse principal component analysis for process supervisory monitoring and fault detection

Yang Liu^{a,*}, Guoshan Zhang^b, Bingyin Xu^a

► Liu-Zeng-Xie-Luo-Su, IEEE TII, 2019

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 15, NO. 5, MAY 2019

2721

Structured Joint Sparse Principal Component Analysis for Fault Detection and Isolation

Yi Liu[®], Jiusun Zeng[®], Lei Xie[®], Shihua Luo, and Hongye Su[®]

CCA

Canonical correlation analysis (CCA)

$$\min_{A,B} \frac{1}{2} \|XA - YB\|_F^2$$

s.t. $A^\top X^\top XA = I, \ B^\top Y^\top YB = I$

$$\begin{array}{l} \min_{A,B} & -\operatorname{Tr}(A^{\top}X^{\top}YB) \\ \text{s.t.} & A^{\top}X^{\top}XA = I, \ B^{\top}Y^{\top}YB = I \end{array}$$

- ► Hotelling, Biometrika, 1936
- Yang-Liu-Liu-Tao, IEEE TKDE, 2021

CCA

Statistics

- Witten-Tibshirani-Hastie, Extensions of sparse canonical correlation analysis with applications to genomic data, Biostatistics, 2009
- Andrew-Arora-Bilmes-Livescu, Deep canonical correlation analysis, ICML, 2013
- Lindenbaum-Salhov-Averbuch-Kluger, ℓ_0 -sparse canonical correlation analysis, ICML, 2022
- Optimization
 - Chu-Liao-Ng-Zhan, Sparse canonical correlation analysis: New formulation and algorithm, IEEE TPAMI, 2013
 - Chen-Ma-Xue-Zou, An alternating manifold proximal gradient method for sparse principal component analysis and sparse canonical correlation analysis, IJOO, 2020
 - Li-Xiu-Liu-Miao, An efficient Newton-based method for sparse generalized canonical correlation analysis, IEEE SPL, 2022

Machine Learning

- Chu-Liao-Ng-Zhan, Sparse canonical correlation analysis: New formulation and algorithm, IEEE TPAMI, 2013
- Sun-Xiu-Luo-Liu, Learning high-order multi-view representation by new tensor canonical correlation analysis, IEEE TCSVT, 2023
- Zhou-Ataee-Hou-Tong-X-Feng-Long-Shen, Fair canonical correlation analysis, NeurIPS, 2024

Chen-Ding-Zhang-Li-Hu, CEP, 2016

Canonical correlation analysis-based fault detection methods with application to alumina evaporation process $\overset{\alpha}{\sim}$

Zhiwen Chen^{a,*}, Steven X. Ding^a, Kai Zhang^a, Zhebin Li^b, Zhikun Hu^b

Chen-Ding-Peng-Yang-Gui, IEEE TIE, 2018

E TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 65, NO. 2, FEBRUARY 2018

1559

Fault Detection for Non-Gaussian Processes Using Generalized Canonical Correlation Analysis and Randomized Algorithms

Zhiwen Chen[©], Steven X. Ding, Tao Peng, Chunhua Yang, *Member, IEEE*, and Weihua Gui, *Member, IEEE*

Motivation

▶ PCA v.s. CCA

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

What shall we do

- How to improve performance?
- How to develop efficient algorithms?
- How to apply to industrial engineering?

Outline

Introduction

Sparse Representation

Deep Learning

Future Work

Robust PCA

► Xiu-Yang-Kong-Liu, JPC, 2020

$$\min_{A,B} \quad \frac{1}{2} \|X - XBA^{\top}\|_{F}^{2} + \lambda_{1} \|B\|_{2,1}$$

s.t. $A^{\top}A = I$
 \Downarrow

$$\min_{A,B,E} \quad \frac{1}{2} \| X - XBA^{\top} - E \|_F^2 + \lambda_1 \| B \|_{2,1} + \lambda_2 \| E \|_1 + \lambda_3 \operatorname{Tr}(B^{\top} L^h B)$$

s.t. $A^{\top} A = I$

Alternating direction method of multipliers (ADMM)

$$\min_{A,C,D,E,B} \quad \frac{1}{2} \| X - XCA^{\top} - E \|_{F}^{2} + \lambda_{1} \| D \|_{2,1} + \lambda_{2} \| E \|_{1} + \lambda_{3} \operatorname{Tr}(B^{\top}L^{h}B)$$

s.t. $A^{\top}A = I, \ B = C, \ B = D$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Robust PCA

Fault No.	PCA		RPCA	RPCA			LRPCA	
	T^2	SPE	T^2	SPE	T^2	SPE	T^2	SPE
1	99.13	99.88	99.25	99.88	99.25	99.88	99.25	100
2	98.38	95.75	98.38	98.00	98.38	99.00	98.38	99.75
3	0.88	2.63	1.88	3.25	2.25	4.25	3.88	6.75
4	20.88	100	30.25	100	34.50	100	39.38	100
5	24.13	20.88	28.75	24.25	30.25	24.25	34.50	24.50
6	99.13	100	99.25	100	99.38	100	99.38	100
7	100	100	100	100	100	100	100	100
8	96.88	83.63	97.13	91.50	97.13	96.75	98.50	96.75
9	1.75	1.75	2.63	2.50	1.75	2.50	3.75	2.75
10	29.63	25.75	33.13	32.75	34.00	30.38	36.13	34.58
11	40.63	74.88	46.37	81.25	48.38	84.88	49.50	90.25
12	98.38	89.50	98.50	90.75	98.50	90.75	99.25	90.75
13	93.63	95.25	93.63	96.25	93.63	97.50	93.63	99.75
14	99.25	100	99.50	100	99.88	100	99.88	100
15	1.38	3.00	2.50	3.88	1.50	3.88	3.75	7.25
16	13.50	27.38	14.13	32.25	14.63	39.50	16.78	39.50
17	76.25	95.38	78.00	95.88	83.50	96.25	88.63	96.75
18	89.25	90.13	89.38	91.25	89.38	92.50	90.63	92.50
19	14.13	18.50	16.25	24.38	16.25	22.38	16.75	28.47
20	31.75	49.75	42.13	52.25	39.38	68.25	48.38	69.63
21	39.25	47.25	39.50	47.38	44.63	49.25	45.75	52.38
Average	55.63	60.14	57.64	62.82	58.41	64.98	60.29	66.75

► Fault detection rate (FDR)

Monitoring results for Fault 10

Sparse constrained PCA

Xiu-Yang-Kong-Liu, DDCLS, 2020 / Xiu-Miao-Liu, IEEE TII, 2023

$$\min_{A,B} \quad \frac{1}{2} \|X - XBA^{\top}\|_{F}^{2} + \lambda_{1} \|B\|_{2,1}$$

s.t. $A^{\top}A = I$
 \Downarrow
$$\max_{A,B} \quad \frac{1}{2} \|X - XBA^{\top}\|_{F}^{2} + \lambda \operatorname{Tr}(B^{\top}LB)$$

s.t. $A^{\top}A = I, \ \|B\|_{2,0} \leq s$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Alternating direction method of multipliers (ADMM)
- Two-stage monitoring framework
 - Perform fault detection using residual generators
 - Do fault isolation by shrinking the sparsity level s

Sparse constrained PCA

Simulation examples

Application on the cylinder-piston process

・ロット (四)・ (目)・ (日)・ (日)

Sparse CCA

► Xiu-Yang-Kong-Liu, TCSII, 2021

$$\begin{array}{l} \min_{A,B} \quad \frac{1}{2} \|XA - YB\|_{F}^{2} \\ \text{s.t.} \quad A^{\top}X^{\top}XA = I, \ B^{\top}Y^{\top}YB = I \\ & \downarrow \\ \min_{A,B} \quad \frac{1}{2} \|XA - YB\|_{F}^{2} + \lambda_{1}\|A\|_{2,1} + \lambda_{2}\|B\|_{2,1} \\ \text{s.t.} \quad A^{\top}X^{\top}XA = I, \ B^{\top}Y^{\top}YB = I \\ & \downarrow \\ \\ \min_{A,B} \quad \frac{1}{2} \|XA - YB\|_{F}^{2} + \lambda_{1}\|A\|_{2,1} + \lambda_{2}\|B\|_{2,1} + \mu_{1}\text{Tr}(A^{\top}L_{1}A) + \mu_{2}\text{Tr}(B^{\top}L_{2}B) \\ \text{s.t.} \quad A^{\top}X^{\top}XA = I, \ B^{\top}Y^{\top}YB = I \\ \\ \text{s.t.} \quad A^{\top}X^{\top}XA = I, \ B^{\top}Y^{\top}YB = I \\ \end{array}$$

Alternating minimization algorithm (AMA)

▶ The generated sequence $\{(A^k, B^k)\}$ converges to a local minimizer

Sparse CCA

► Offline modeling

- Normalize the training datasets
- Compute the projections using SISCCA
- Determine the control limit and construct detection logic

Online monitoring

- Normalize the testing datasets
- Calculate the monitoring statistics
- Make a decision according to the detection logic

Monitoring results of FDR and FAR

Fault No.	CCA		SCCA		JSC	CA	SJSCCA	
	FDR	FAR	FDR	FAR	FDR	FAR	FDR	FAR
1	99.25	0.00	99.38	0.00	99.50	0.00	99.75	0.00
2	98.62	0.63	99.47	0.00	99.47	0.00	99.47	0.00
3	33.80	2.50	36.64	1.88	38.20	0.00	41.38	0.00
4	100	1.88	100	0.63	100	0.00	100	0.00
5	29.63	1.88	31.00	0.63	34.50	0.00	36.62	0.00
6	99.88	0.63	99.90	0.00	100	0.00	100	0.00
7	100	1.88	100	0.63	100	0.63	100	0.00
8	93.25	1.88	95.00	0.63	95.26	0.00	97.85	0.00
9	31.20	3.13	35.25	2.50	38.50	0.63	40.87	0.63
10	27.50	1.25	32.62	0.00	36.13	0.00	39.58	0.00
11	66.37	0.63	69.91	0.00	72.00	0.00	78.50	0.00
12	90.75	1.25	93.87	0.63	94.50	0.63	96.37	0.00
13	91.37	0.63	92.00	0.63	93.67	0.00	95.29	0.00
14	85.00	1.88	86.50	0.63	88.12	0.63	89.82	0.63
15	36.20	3.13	39.57	1.25	40.84	0.63	42.37	0.00
16	15.88	7.50	19.13	4.38	22.75	3.13	26.37	1.25
17	33.37	3.13	36.00	3.13	37.25	3.13	41.75	2.50
18	87.88	1.88	89.70	0.63	91.56	0.63	94.12	0.00
19	22.25	1.25	25.66	1.25	27.08	1.25	29.93	1.25
20	49.63	0.63	51.80	0.00	55.75	0.00	55.75	0.00
21	90.00	1.25	91.75	1.25	93.63	0.63	96.60	0.63
Average	65.80	1.85	67.86	0.98	69.46	0.57	71.54	0.33

Sparse constrained CCA

► Xiu-Miao-Liu, IEEE TNNLS, 2024

$$\begin{array}{ll} \min_{A,B} & -\operatorname{Tr}(A^{\top}X^{\top}YB) \\ \text{s.t.} & A^{\top}X^{\top}XA = I, \ B^{\top}Y^{\top}YB = I \\ & \downarrow \\ \\ \min_{A,B} & -\operatorname{Tr}(A^{\top}X^{\top}YB) \\ \text{s.t.} & A^{\top}X^{\top}XA = I, \ B^{\top}Y^{\top}YB = I \\ & \|A\|_{2,0} \leq s_1, \ \|B\|_{2,0} \leq s_2 \end{array}$$

Alternating minimization algorithm (AMA) + Manifold optimization

$$\min_{\substack{A,B,C,D \\ \text{s.t.}}} -\frac{1}{N} \operatorname{Tr}(C^{\top}D) + \frac{\beta}{2} \|XA - C\|_{F}^{2} + \frac{\beta}{2} \|YB - D\|_{F}^{2}$$

s.t. $\|A\|_{2,0} \le s_{1}, \|B\|_{2,0} \le s_{2}$
 $C^{\top}C = I, D^{\top}D = I$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Sparse constrained CCA

Suppose that {A^k} is a generated sequence and X has an upper restricted isometry constant C_{2s1}. Whenever 0 < α_k ≤ 1/C_{2s1+σ}, it holds that

$$G(A^{k+1}) \leq G(A^k) - rac{\sigma}{2} \|A^{k+1} - A^k\|_F^2$$

When $k \to \infty$, it derives that $||A^{k+1} - A^k||_F \to 0$ and $||(\nabla G(A^k))_{supp(A^k)}||_F \to 0$.

Suppose that $\{C^k\}$ is a generated sequence. Then there exist $\bar{\gamma}_1 > 0$ and $\bar{\beta} > 0$ such that

 $H(C^{k+1}) - H(C^k) \leq -\bar{\beta} \|V^k\|_F^2.$

Suppose that {(A^k, B^k, C^k, D^k)} is a sequence generated. Moreover, X and Y satisfy SRIP with constants C_{2s1}, c_{2s1} and C_{2s2}, c_{2s2}, respectively. Then the sequence converges to a stationary point. Further, our algorithm returns an *e*-stationary point in at most

 $\lfloor (F(A^0, B^0, C^0, D^0) - F^*) / ((\bar{\sigma}_1 + \bar{\sigma}_2 + 2\bar{\beta})\epsilon) \rfloor + 1$

iterations, where F^* denotes a lower bound with $\bar{\sigma}_1$, $\bar{\sigma}_2$, and $\bar{\beta}$ being constants.

Kernel CCA

► Xiu-Li, IEEE JSEN, 2023

$$\begin{split} \min_{A,B} & -\operatorname{Tr}(A^{\top}X^{\top}YB) \\ \text{s.t.} & A^{\top}X^{\top}XA = I, \ B^{\top}Y^{\top}YB = I \\ & \|A\|_{2,0} \leq \mathfrak{s}_1, \ \|B\|_{2,0} \leq \mathfrak{s}_2 \\ & \Downarrow \end{split}$$

$$\begin{split} \min_{A,B} &-\operatorname{Tr}(A^{\top} K_X^{\top} K_Y B) + \lambda_1 \operatorname{Tr}(A^{\top} L_1 A) + \lambda_2 \operatorname{Tr}(B^{\top} L_2 B) \\ \text{s.t.} & A^{\top} K_X^{\top} K_X A = I, \ B^{\top} K_Y^{\top} K_Y B = I \\ & \|A\|_{2,0} \le s_1, \ \|B\|_{2,0} \le s_2 \end{split}$$

 $\blacktriangleright \text{ Note that } K_X = \langle \Phi_X, \Phi_X \rangle = [\kappa_X(\mathbf{x}_i, \mathbf{x}_j)]_{i,j=1}^n, \ K_Y = \langle \Phi_Y, \Phi_Y \rangle = [\kappa_Y(\mathbf{y}_i, \mathbf{y}_j)]_{i,j=1}^n$

- Alternating direction method of multipliers (ADMM)?
- Alternating minimization algorithm (AMA)?

Kernel CCA

First, compute the classical KCCA to get a good initial point

$$A = \arg\min_{A} \quad \frac{1}{2} \|K_X A - T_X\|_F^2$$
$$B = \arg\min_{B} \quad \frac{1}{2} \|K_Y B - T_Y\|_F^2$$

Next, solve the sparse and graph constrained problems

Update A

Update B

$$\begin{split} \min_{A} & \frac{1}{2} \| K_{X}A - T_{X} \|_{F}^{2} + \lambda_{1} \mathrm{Tr}(A^{\top}L_{1}A) \\ \mathrm{s.t.} & \| A \|_{2,0} \leq s_{1} \\ \min_{B} & \frac{1}{2} \| K_{Y}B - T_{Y} \|_{F}^{2} + \lambda_{2} \mathrm{Tr}(B^{\top}L_{2}B) \\ \mathrm{s.t.} & \| B \|_{2,0} \leq s_{2} \end{split}$$

Outline

Introduction

Sparse Representation

Deep Learning

Future Work

Deep CCA

► Xiu-Miao-Yang-Liu, IEEE TII, 2022

 $\min_{\substack{A,B \\ A,B}} - \operatorname{Tr}(A^{\top}X^{\top}YB)$ s.t. $A^{\top}X^{\top}XA = I, B^{\top}Y^{\top}YB = I$ $\|A\|_{2,0} \leq s_1, \|B\|_{2,0} \leq s_2$ $\downarrow \downarrow$ $\min_{\substack{A,B \\ A,B}} - \operatorname{Tr}(A^{\top}f(X)g(Y)^{\top}B)$ s.t. $A^{\top}f(X)f(X)^{\top}A = I, B^{\top}g(Y)g(Y)^{\top}B = I$ $\|A\|_{2,0} \leq s_1, \|B\|_{2,0} \leq s_2$

Loss is defined as

$$-\mathrm{Tr}(A^{\top}f(X)g(Y)^{\top}B) + \frac{1}{2}\sum_{i=1}^{N} \|\mathbf{x}_i - p(f(\mathbf{x}_i))\|^2 + \frac{1}{2}\sum_{i=1}^{N} \|\mathbf{y}_i - q(g(\mathbf{y}_i))\|^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deep CCA

Fault No.	CC	A	CCA-SCO		KCCA		KCCA-SCO		DCCA		DCCA-SCO	
	FDR	FAR	FDR	FAR	FDR	FAR	FDR	FAR	FDR	FAR	FDR	FAR
IDV(1)	99.75%	0.63%	99.75%	0.63%	99.88%	0.63%	99.88%	0.00%	99.88%	0.00%	99.88%	0.00%
IDV(2)	96.50%	0.63%	97.25%	0.63%	98.38%	0.00%	98.38%	0.00%	98.47%	0.00%	99.50%	0.00%
IDV(4)	100%	1.88%	100%	1.25%	100%	1.25%	100%	0.63%	100%	0.63%	100%	0.00%
IDV(5)	100%	3.75%	100%	3.25%	100%	2.50%	100%	2.50%	100%	2.50%	100%	1.88%
IDV(6)	100%	4.38%	100%	4.38%	100%	3.75%	100%	3.25%	100%	3.25%	100%	3.25%
IDV(7)	100%	3.75%	100%	3.25%	100%	2.50%	100%	1.75%	100%	1.25%	100%	0.63%
IDV(8)	96.50%	1.88%	97.50%	1.88%	97.85%	0.63%	98.25%	0.63%	98.88%	0.63%	99.38%	0.00%
IDV(10)	86.88%	1.25%	87.75%	0.63%	89.58%	0.63%	89.75%	0.63%	90.38%	0.00%	93.88%	0.00%
IDV(11)	76.50%	0.63%	77.50%	0.63%	78.50%	0.63%	79.63%	0.63%	80.13%	0.63%	84.50%	0.00%
IDV(12)	99.00%	1.25%	99.00%	0.63%	99.25%	0.00%	99.37%	0.00%	99.50%	0.63%	99.75%	0.00%
IDV(13)	95.75%	0.63%	96.13%	0.63%	96.50%	0.63%	96.50%	0.63%	96.75%	0.00%	96.88%	0.00%
IDV(14)	100%	1.88%	100%	1.25%	100%	0.63%	100%	0.63%	100%	0.63%	100%	0.63%
IDV(16)	93.00%	7.50%	94.38%	5.63%	95.63%	1.25%	96.63%	1.25%	96.63%	1.25%	98.75%	0.63%
IDV(17)	94.13%	3.13%	94.13%	2.50%	94.25%	2.50%	95.13%	1.75%	95.75%	1.25%	96.38%	1.25%
IDV(18)	90.88%	1.88%	91.25%	1.25%	92.50%	0.00%	92.75%	0.00%	93.50%	0.63%	95.63%	0.00%
IDV(19)	92.00%	1.25%	92.63%	1.25%	94.25%	1.25%	94.25%	0.63%	94.93%	0.63%	95.50%	0.63%
IDV(20)	86.88%	0.63%	87.13%	0.63%	87.75%	0.63%	87.75%	0.00%	88.88%	1.25%	89.38%	0.00%

Monitoring results of FDR and FAR

Detection time

CCA	CCA-SCO	KCCA	KCCA-SCO	DCCA	DCCA-SCO
0.044	0.072	15.676	22.556	2.806	3.097

Monitoring performance

Hidden layers	1	2	3
FDR	89.75%	93.88%	93.88%
FAR	0.63%	0.00%	0.00%

Average comparison

Dual RNN

► Xiu-Zhang-Guo-Liu-Yang, IEEE TIM, 2024

 $\bar{\mathbf{y}}^{pos} = {\mathbf{y} \mid G(\mathbf{y}^{pre} - \mathbf{y}) \ge G_{th}, \mathbf{y} \in \bar{\mathbf{y}}}.$

Dual RNN

Monitoring results of FDR

No.	DPCA	DKPCA	SAM	LQ-SAM	RIKPCA	KLD	RNN	D-RNN	D-LSTM	D-GRU
1	99.13%	99.25%	99.50%	99.50%	99.13%	99.25%	99.50%	99.75%	99.50%	99.75%
2	98.50%	98.50%	97.38%	97.50%	98.50%	98.50%	98.25%	98.50%	98.63%	98.50%
3	0.38%	0.38%	2.38%	2.50%	3.63%	3.75%	2.50%	4.63%	3.25%	2.25%
4	0.88%	1.75%	24.00%	25.25%	2.75%	22.50%	99.63%	99.75%	100.00%	99.63%
5	24.38%	23.63%	28.88%	31.75%	21.00%	27.00%	32.50%	26.63%	27.88%	31.50%
6	99.75%	98.88%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
7	35.50%	36.50%	99.13%	99.50%	38.75%	98.75%	100.00%	100.00%	100.00%	100.00%
8	97.25%	97.13%	97.63%	97.25%	97.50%	97.50%	95.63%	97.63%	96.75%	96.88%
9	0.38%	1.13%	0.88%	1.25%	3.86%	4.00%	1.38%	4.50%	2.25%	1.75%
10	25.13%	26.63%	43.00%	43.13%	29.38%	44.50%	27.38%	60.75%	43.13%	49.75%
11	10.86%	5.50%	45.00%	49.63%	6.50%	33.63%	61.13%	52.63%	63.00%	60.75%
12	99.00%	99.00%	99.63%	99.00%	99.00%	99.63%	88.38%	99.00%	93.88%	93.00%
13	94.75%	94.25%	99.63%	99.75%	95.50%	95.63%	93.25%	95.13%	93.63%	93.25%
14	99.75%	93.13%	99.38%	99.63%	94.75%	99.75%	89.00%	100.00%	87.88%	92.63%
15	0.50%	0.75%	2.00%	3.50%	4.25%	4.13%	1.63%	4.13%	2.63%	3.50%
16	13.86%	14.25%	20.63%	21.50%	14.25%	21.50%	17.75%	30.88%	20.50%	27.13%
17	81.38%	75.75%	79.88%	83.38%	83.25%	90.25%	53.25%	94.50%	84.38%	88.13%
18	88.88%	89.25%	95.88%	96.13%	90.75%	95.75%	87.63%	90.00%	88.00%	88.25%
19	11.88%	5.88%	20.38%	21.63%	11.75%	25.75%	15.13%	29.75%	21.50%	24.25%
20	20.50%	20.13%	43.75%	45.88%	21.50%	44.50%	49.50%	51.50%	51.63%	52.00%
21	42.00%	36.25%	39.00%	42.63%	40.75%	56.75%	28.25%	49.50%	34.50%	39.25%
Ave.	49.74%	48.52%	58.96%	60.06%	50.31%	58.12%	59.13%	66.15%	62.52%	63.91%

Probability plots

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Deep TL

► Yu, Master's Thesis, 2024

Deep joint probability adaptation network (DJPAN) + AlexNet / ResNet50

Loss is defined as

$$\min_{\Theta} \frac{1}{n} \sum_{i=1}^{n} J(\theta(\mathbf{x}_{S,i}), y_{S,i}) + \lambda \sum_{l \in \mathcal{L}} d_{\mathcal{L}}(\mathcal{D}'_{S}, \mathcal{D}'_{T})$$

Deep TL

Data processing

OF 0.54	F 0.18	IF 0.36	IF 0.54	Normal
RF 0.18	RF 0.36	RF 0.54	OF 0.18	OF 0.36

► Transfer accuracy

	Methods							
Tasks	AlexNet	DDC	DeepCoral	DAN	DANN	DSAN	BNM	DJPAN
$SP0 \rightarrow SP1$	74.82	75.18	73.57	82.50	88.84	74.91	88.21	90.98
$\rm SP0 \rightarrow SP2$	71.09	72.13	77.12	78.06	81.45	82.11	85.78	89.74
$\rm SP0 \rightarrow SP3$	76.01	76.28	72.99	74.08	81.32	84.25	71.25	78.93
$\rm SP1 \rightarrow SP0$	44.42	47.38	59.68	78.74	88.27	75.69	73.98	81.98
$\rm SP1 \rightarrow SP2$	64.41	68.64	68.08	85.40	99.44	92.09	82.77	<u>96.23</u>
$\rm SP1 \rightarrow SP3$	67.22	77.47	74.48	83.42	86.45	84.98	87.73	86.27
$\mathrm{SP2} \to \mathrm{SP0}$	58.91	61.20	65.59	67.21	69.30	64.92	<u>69.49</u>	81.22
$\rm SP2 \rightarrow SP1$	70.89	75.36	78.30	92.41	96.25	85.71	91.96	<u>95.45</u>
$\rm SP2 \rightarrow SP3$	68.32	75.27	85.35	90.11	81.32	87.82	79.58	90.29
$\text{SP3} \rightarrow \text{SP0}$	61.98	64.92	65.97	71.12	73.21	72.16	69.59	79.03
$SP3 \rightarrow SP1$	57.86	62.59	62.41	68.30	72.14	61.88	74.73	70.89
$\text{SP3} \rightarrow \text{SP1}$	52.26	54.71	54.33	75.33	80.13	67.14	76.46	74.20
Average	64.02	67.59	69.82	78.89	83.18	77.81	79.29	84.60

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Introduction

Sparse Representation

Deep Learning

Future Work

Future Work

- ► Deep CCA for FD
 - Chen-Liang-Ding-Yang-Peng-Yuan, A comparative study of deep neural network-aided canonical correlation analysis-based process monitoring and fault detection methods, IEEE TNNLS, 2022
 - Song-Zheng-Jin-Shi-Tao-Tan, A fault-targeted gated recurrent unit-canonical correlation analysis method for incipient fault detection, IEEE TII, 2024
- Deep transfer learning for FD
 - Zhao-Zhang-Yu-Sun-Wang-Yan-Chen, Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study, IEEE TIM, 2021
 - Chen-Yang-Xue-Huang-Ferrero-Wang, Deep transfer learning for bearing fault diagnosis: A systematic review since 2016, IEEE TIM, 2023
- Large language models for FD
 - Zheng-Pan-Liu-Chen, Empirical study on fine-tuning pre-trained large language models for fault diagnosis of complex systems, RESS, 2024
 - Zhang-Xu-Li-Sun-Bao-Zhang, LLM-TSFD: An industrial time series human-in-the-loop fault diagnosis method based on a large language model, ESA, 2025
 - ► Tao-Liu-Ning-Cao-Huang-Lu, LLM-based framework for bearing fault diagnosis, MSSP, 2025

References

- Xiu-Pan-Yang-Liu, Efficient and fast joint sparse constrained canonical correlation analysis for fault detection, IEEE Transactions on Neural Networks and Learning Systems, 2024
- Xiu-Zhang-Guo-Liu-Yang, A new end-to-end monitoring framework for nonlinear dynamic processes with unknown noise statistics, IEEE Transactions on Instrumentation and Measurement, 2024
- Xiu-Miao-Liu, A sparsity-aware fault diagnosis framework focusing on accurate isolation, IEEE Transactions on Industrial Informatics, 2023
- Xiu-Li, Learning sparse kernel CCA with graph priors for nonlinear process monitoring, IEEE Sensors Journal, 2023
- Xiu-Miao-Yang-Liu, Deep canonical correlation analysis using sparsity constrained optimization for nonlinear process monitoring, IEEE Transactions on Industrial Informatics, 2022
- Xiu-Yang-Kong-Liu, Data-driven process monitoring using structured joint sparse canonical correlation analysis, IEEE Transactions on Circuits and Systems II: Express Briefs, 2021
- Xiu-Yang-Kong-Liu, Laplacian regularized robust principal component analysis for process monitoring, Journal of Process Control, 2020