Plug-and-Play Tensor Low-Rank Approximation for Hyperspectral Anomaly Detection

Xianchao Xiu

Department of Automation

Algorithm Software and Applications, December 8-10, 2023

Joint work with Jingjing Liu (SHU), Jianhua Zhang (SHU) and others

Outline

Introduction

Plug-and-Play TLRA

Multidirectional Sparse TLRA

Future Work

HAD

Hyperspectral anomaly detection (HAD): find abnormal targets, such as infected trees in forests, rare minerals in geosciences, and airplanes in defense

Benchmark methods (2005-2022)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Tensor LRR

From LRR to TLRR or TLRA

(b) Results of LRR and TLRR on the data with tensor linear relations.

What are the advantages of tensor modeling?

- Excellent data representation with (possibly) low computational complexity
- Different tensor decomposition including Tucker, CP, t-SVD, BT, TT, TR

Tensor LRR

► Wang-Wang-Hong-Roy-Chanussot, IEEE Transactions on Cybernetics, 2023

- In this talk, we focus on the following questions
 - How to characterize sparsity?
 - How to integrate deep priors?

Outline

Introduction

Plug-and-Play TLRA

Multidirectional Sparse TLRA

Future Work

Motivation

► How to characterize sparsity?

Entry-wise sparsity

$$\|\mathcal{E}\|_1 = \sum_{i=1}^h \sum_{j=1}^v \sum_{k=1}^z |\mathcal{E}(i,j,k)| \qquad \Rightarrow \qquad \|\mathcal{E}\|_0 = \sharp\left\{(i,j,k) \mid |\mathcal{E}(i,j,k)| \neq 0\right\}$$

Tube-wise sparsity

 $\|\mathcal{E}\|_{\mathrm{F},0} = \sharp\{(i,j) \mid \|\mathcal{E}(i,j,:)\|_2 \neq 0\}$

Motivation

How to integrate deep priors?

What are the advantages of PnP modeling?

- Implicit regularizer yet flexible
- Learn priors by pre-trained neural networks

Formulation

Plug-and-play tensor low-rank approximation (PnP-TLRA)

```
\min_{\mathcal{Z} \in \mathcal{E}} \|\mathcal{Z}\|_{\mathrm{WTNN}} + \lambda \|\mathcal{E}\|_1
                         st \mathcal{X} = A * \mathcal{Z} + \mathcal{E}
                                                              ∜
\min_{\mathcal{Z}, \mathcal{E}, \mathcal{N}} \ \|\mathcal{Z}\|_{\mathrm{WTNN}} + \lambda \|\mathcal{E}\|_{\mathrm{F}, \mathbf{0}} + \mu \|\mathcal{N}\|_{\mathrm{F}}^2
    s.t. \mathcal{X} = \mathcal{A} * \mathcal{Z} + \mathcal{E} + \mathcal{N}
                                                              1
        \min_{\mathcal{Z}, \mathcal{E}, \mathcal{N}} \phi(\mathcal{Z}) + \lambda \|\mathcal{E}\|_{\mathrm{F}, 0} + \mu \|\mathcal{N}\|_{\mathrm{F}}^{2}
             s.t. \mathcal{X} = \mathcal{A} * \mathcal{Z} + \mathcal{E} + \mathcal{N}
```

▶ $\phi(\mathcal{Z})$: PnP prior ranging from WTNN, nonlinear TNN to DnCNN, FFDNet

Algorithm

Alternating direction method of multipliers (ADMM)

$$egin{aligned} & L_eta(\mathcal{Z},\mathcal{E},\mathcal{N},\mathcal{Y}) = \phi(\mathcal{Z}) + \lambda \|\mathcal{E}\|_{ ext{F},0} + \mu \|\mathcal{N}\|_{ ext{F}}^2 \ & - \langle \mathcal{Y},\mathcal{X} - \mathcal{A}*\mathcal{Z} - \mathcal{E} - \mathcal{N}
angle + rac{eta}{2} \|\mathcal{X} - \mathcal{A}*\mathcal{Z} - \mathcal{E} - \mathcal{N}\|_{ ext{F}}^2 \end{aligned}$$

The iterative scheme

Update Z via solving

$$\min_{\mathcal{Z}} \phi(\mathcal{Z}) + \langle \nabla_{\mathcal{Z}} g(\mathcal{Z}^k), \mathcal{Z} - \mathcal{Z}^k \rangle + \frac{\eta}{2} \|\mathcal{Z} - \mathcal{Z}^k\|_{\mathrm{F}}^2$$

► Consider $\phi(\mathcal{Z}) = ||\mathcal{Z}||_{WTNN}$, then $\mathcal{Z}^{k+1} = Shrink_{\mathcal{W}^k}(\mathcal{Z}^k - \nabla_{\mathcal{Z}}g(\mathcal{Z}^k)/\eta, 1/\eta)$ ► Consider $\phi(\mathcal{Z}) = ||\mathcal{Z}||_{FFDNet}$, then $\mathcal{Z}^{k+1} = FFDNet(\mathcal{Z}^k - \nabla_{\mathcal{Z}}g(\mathcal{Z}^k)/\eta, 1/\eta)$

Convergence

Lemma (decreasing) The generated sequence $\{L_{\beta}(\mathcal{Z}^k, \mathcal{E}^k, \mathcal{N}^k, \mathcal{Y}^k)\}$ is decreasing. Lemma (boundedness)

A generated sequence $\{(\mathcal{Z}^k, \mathcal{E}^k, \mathcal{N}^k, \mathcal{Y}^k)\}$ is bounded.

Theorem (subsequential convergence)

Any cluster point $\{\mathcal{Z}^*, \mathcal{E}^*, \mathcal{N}^*, \mathcal{Y}^*\}$ converges to a stationary point of TLRA.

Theorem (global convergence)

With the assumption of KL function, the sequence $\{(\mathcal{Z}^k, \mathcal{E}^k, \mathcal{N}^k, \mathcal{Y}^k)\}$ converges to a stationary point of TLRA.

Note that additional assumptions are required for PnP-TLRA!

- Datasets: San Diego, HYDICE, Indian Pines, ABU (airport, beach, urban)
- Compared methods: matrix/tensor
 - RPCA-RX: Low-Rank and Sparse Matrix Decomposition-Based Anomaly Detection for Hyperspectral Imagery, 2019
 - LSMAD: A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection, 2015
 - LRASR: Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation, 2016
 - GTVLRR: Graph and Total Variation Regularized Low-Rank Representation for Hyperspectral Anomaly Detection, 2020
 - ELRSF-SP: Hyperspectral Anomaly Detection via Enhanced Low-Rank and Smoothness Fusion Regularization Plus Saliency Prior, 2024
 - TPCA: A Preprocessing Method for Hyperspectral Target Detection Based on Tensor Principal Component Analysis, 2018
 - PTA: Prior-Based Tensor Approximation for Anomaly Detection in Hyperspectral Imagery, 2022

PCA-TLRSR: Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection, 2023

Dataset	GRXD	RPCA-RX	LSMAD	GTVLRR	TPCA	PTA	PCA-TLRSR	GAED	GNLTR	ELRSF-SP	TLRA	PnP-TLRA
SD	0.8886	0.9165	0.9457	0.9648	0.8849	0.9868	0.9923	0.9889	0.9838	0.9878	<u>0.9927</u>	0.9942
HYDICE	0.9857	0.9842	0.9906	<u>0.9918</u>	0.8242	0.8396	0.9802	0.9639	0.9859	0.9768	0.9840	0.9968
ABU-airport-1	0.8221	0.8089	0.8341	0.8957	0.8023	0.7698	0.9291	0.8106	0.9293	0.8221	0.9331	<u>0.9303</u>
ABU-airport-2	0.8403	0.8431	0.9192	0.8911	0.8891	0.8995	0.9345	0.9272	0.9242	0.8891	0.9409	0.9523
ABU-airport-3	0.9288	0.9275	0.9398	0.9287	0.9297	0.7369	0.9233	0.8638	0.9330	0.9209	<u>0.9379</u>	0.9380
ABU-airport-4	0.9526	0.9627	0.9864	0.9776	0.9432	0.9890	0.9914	0.9654	0.9606	0.9876	0.9932	<u>0.9918</u>
ABU-beach-1	0.9804	0.9761	0.9778	0.9703	0.9860	0.9682	0.9831	0.9223	0.9638	0.9780	0.9868	0.9895
ABU-beach-2	0.9106	0.9097	0.9056	0.9348	0.8061	0.8862	0.9331	0.5061	0.9472	0.9097	0.9580	<u>0.9533</u>
ABU-beach-3	0.9998	0.9995	0.9996	0.9866	0.9982	0.9483	0.9994	0.9891	0.9928	0.9945	0.9994	<u>0.9996</u>
ABU-beach-4	0.9538	0.9599	0.9349	0.9803	0.9338	0.9000	0.9755	0.8514	0.9044	0.9698	<u>0.9899</u>	0.9902
ABU-urban-1	0.9907	0.9922	0.9818	0.8742	0.9390	0.8940	0.9923	0.9409	0.9325	0.9907	<u>0.9934</u>	0.9951
ABU-urban-2	0.9946	0.9957	0.9849	0.8628	0.9409	0.9701	0.9928	0.9958	0.9874	0.9946	0.9983	0.9994
ABU-urban-3	0.9513	0.9577	0.9633	0.9365	0.8224	0.9090	0.9832	0.9725	0.9667	0.9513	0.9888	0.9855
ABU-urban-4	0.9887	0.9871	0.9809	0.9205	0.9835	<u>0.9937</u>	0.9857	0.9556	0.9931	0.9909	0.9883	0.9950
ABU-urban-5	0.9690	0.9658	0.9610	0.9347	0.9370	0.8693	0.9811	0.9148	0.9297	0.9658	0.9821	0.9837
Average	0.9438	0.9458	0.9537	0.9367	0.9080	0.9040	0.9718	0.9046	0.9556	0.9553	0.9778	0.9796

Area under the curve (AUC)

Receiver operating characteristic (ROC)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Results on the San Diego dataset

Results on the HYDICE dataset

Statistical separability analysis

Noise robustness

SNR (dB)	GRXD	RPCA-RX	LSMAD	GTVLRR	TPCA	PTA
Original	0.9907	0.9922	0.9817	0.8742	0.9390	0.8940
12.64	0.9431	0.9474	0.9378	0.8548	0.9097	0.8548
5.43	0.9089	0.9044	0.8991	0.8221	0.8608	0.8364
SNR (dB)	PCA-TLRSR	GAED	GNLTR	ELRSF-SP	TLRA	PnP-TLRA
Original	0.9923	0.9409	0.9325	0.9907	0.9934	0.9951
12.64	0.9505	0.9209	0.9059	0.9389	<u>0.9513</u>	0.9577
5.43	0.9106	0.8840	0.8721	0.9027	<u>0.9171</u>	0.9199

Runtime comparisions

Dataset	TPCA	PTA	PCA-TLRSR	TLRA	PnP-TLRA
San Diego	34.66	26.37	10.99	5.89	10.63
HYDICE	25.39	22.76	<u>9.31</u>	4.89	24.49
ABU-airport	41.63	29.21	11.32	6.12	<u>9.71</u>
ABU-beach	29.04	38.24	15.61	10.86	<u>12.31</u>
ABU-urban	36.95	28.01	17.35	8.38	<u>11.82</u>

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Outline

Introduction

Plug-and-Play TLRA

Multidirectional Sparse TLRA

Future Work

Motivation

Weighted multidirectional sparsity (WMS)

$$\|E\|_{1} = \sum_{i=1}^{m} \sum_{j=1}^{n} |E(i,j)|$$

$$\Downarrow$$

$$\Omega(E) = \sum_{j=1}^{n} \sum_{g \in \mathcal{G}} \|e_{g}^{j}\|_{\infty}$$

$$\Downarrow$$

$$\Omega(\mathcal{E}) = \sum_{i=1}^{3} w_{i} \texttt{fold}(\Omega(\texttt{unfold}(\mathcal{E}, i)), i)$$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Formulation

WMS regularized low-rank tensor representation (WMS-LRTR)

$$\begin{split} \min_{\mathcal{Z},\mathcal{E}} & \|\mathcal{Z}\|_{\text{WTNN}} + \lambda \|\mathcal{E}\|_{1} \\ \text{s.t.} & \mathcal{X} = \mathcal{A} * \mathcal{Z} + \mathcal{E} \\ & \Downarrow \\ \min_{\mathcal{Z},\mathcal{E}} & \|\mathcal{Z}\|_{\text{WTNN}} + \lambda \Omega(\mathcal{E}) \\ \text{s.t.} & \mathcal{X} = \mathcal{A} * \mathcal{Z} + \mathcal{E} \\ & \Downarrow \\ \\ \min_{\mathcal{Z},\mathcal{E}} & \|\mathcal{Z}\|_{\text{WTNN}} + \lambda \Omega(\mathcal{E}) + \mu \phi(\mathcal{E}) \\ \text{s.t.} & \mathcal{X} = \mathcal{A} * \mathcal{Z} + \mathcal{E} \end{split}$$

• $\phi(\mathcal{E})$: PnP denoiser including BM4D, WNNM, FFDNet, SwinIR

Algorithm

Alternating direction method of multipliers (ADMM)

$$\begin{split} \min_{\mathcal{Z}, \mathcal{E}, \mathcal{Y}, \mathcal{W}} & \|\mathcal{Z}\|_{\mathrm{WTNN}} + \lambda \Omega(\mathcal{E}) + \mu \phi(\mathcal{Y}) \\ \text{s.t.} & \mathcal{X} = \mathcal{A} * \mathcal{W} + \mathcal{E}, \ \mathcal{Z} = \mathcal{W}, \ \mathcal{Y} = \mathcal{E} \\ & \downarrow \\ \mathcal{L}_{\beta}(\mathcal{Z}, \mathcal{E}, \mathcal{Y}, \mathcal{W}, \mathcal{Q}_{1}, \mathcal{Q}_{2}, \mathcal{Q}_{3}) = \|\mathcal{Z}\|_{\mathrm{WTNN}} + \lambda \Omega(\mathcal{E}) + \mu \phi(\mathcal{Y}) \\ & + \langle \mathcal{Q}_{1}, \mathcal{X} - \mathcal{A} * \mathcal{W} - \mathcal{E} \rangle + \frac{\beta}{2} \|\mathcal{X} - \mathcal{A} * \mathcal{W} - \mathcal{E}\|_{\mathrm{F}}^{2} \\ & + \langle \mathcal{Q}_{2}, \mathcal{Z} - \mathcal{W} \rangle + \frac{\beta}{2} \|\mathcal{Z} - \mathcal{W}\|_{\mathrm{F}}^{2} + \langle \mathcal{Q}_{3}, \mathcal{Y} - \mathcal{E} \rangle + \frac{\beta}{2} \|\mathcal{Y} - \mathcal{E}\|_{\mathrm{F}}^{2} \end{split}$$

Two issues should be considered

- How to update $\mathcal{E} \Rightarrow$ Quadratic min-cost flow
- How to construct dictionary \Rightarrow PCA

 $\min_{\mathcal{L},\mathcal{S}} \|\mathcal{L}\|_{\mathrm{WTNN}} + \alpha \Omega(\mathcal{S}) \quad \mathrm{s.t.} \ \mathcal{X} = \mathcal{L} + \mathcal{S}$

- Datasets: ABU (airport, beach, urban)
- Compared methods: machine learning/deep learning
 - LRASR: Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation, 2016
 - GTVLRR: Graph and Total Variation Regularized Low-Rank Representation for Hyperspectral Anomaly Detection, 2020
 - PTA: Prior-Based Tensor Approximation for Anomaly Detection in Hyperspectral Imagery, 2022
 - PCA-TLRSR: Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection, 2023
 - LARTVAD: Hyperspectral Anomaly Detection With Tensor Average Rank and Piecewise Smoothness Constraints, 2023
 - DeCNN-AD: Hyperspectral Anomaly Detection via Deep Plug-and-Play Denoising CNN Regularization, 2021
 - Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully Convolutional Autoencoder, 2022
 - RGAE: Hyperspectral Anomaly Detection With Robust Graph Autoencoders, 2022

► AUC values on the Airport scenes

Dataset	AUC	RX	LRASR	GTVLRR	AUTO-AD	RGAE	DeCNN-AD	PTA	PCA-TLRSR	LARTVAD	WMS-LRTR
	AUC _(D,F) ↑	0.8221	0.7284	0.8997	0.6941	0.6387	0.8662	0.9109	0.9420	0.9202	0.9435
Airport-1	$AUC_{(D,\tau)}$ ↑	0.0987	0.1711	0.2665	0.1595	0.0506	0.1562	0.3471	0.3088	0.2540	0.3284
	$AUC_{(F,\tau)}\downarrow$	0.0424	0.1209	0.1153	0.0991	0.0255	0.0689	0.1191	0.0918	0.0816	0.1001
	AUC _{TD} ↑	0.9208	0.8996	1.1647	0.8536	0.6889	1.0224	1.2580	<u>1.2508</u>	1.1742	1.2718
	AUC _{BS} ↑	0.7797	0.6075	0.7844	0.5950	0.6128	0.7974	0.7918	0.8502	0.8386	<u>0.8433</u>
	AUC _{TDBS} ↑	0.0563	0.0502	0.1496	0.0603	0.0252	0.0873	<u>0.2279</u>	0.2170	0.1724	0.2282
	AUC _{ODP} ↑	0.8784	0.7786	1.0493	0.7544	0.6635	0.9536	1.1388	<u>1.1590</u>	1.0927	1.1717
	AUC _(D,F) ↑	0.8403	0.8707	0.8670	0.6764	0.7470	0.9656	0.9411	0.9543	0.9387	0.9704
	$AUC_{(D,\tau)}$ ↑	0.1841	0.3156	0.3175	0.1976	0.0770	0.3257	0.4334	0.3705	0.2845	<u>0.3807</u>
	$AUC_{(F,\tau)}\downarrow$	0.0516	0.1613	0.1379	0.0862	0.0196	0.0476	0.1292	0.0753	0.0692	0.0652
Airport-2	AUC _{TD} ↑	1.0245	1.1863	1.1845	0.8439	0.8239	1.2913	1.3745	1.3248	1.2233	<u>1.3511</u>
	AUC _{BS} ↑	0.7888	0.7094	0.7291	0.5902	0.7274	0.9180	0.8119	0.8790	0.8696	<u>0.9052</u>
	AUC _{TDBS} ↑	0.1325	0.1542	0.1797	0.0814	0.0574	0.2781	<u>0.3042</u>	0.2952	0.2154	0.3155
	AUC _{ODP} ↑	0.9709	1.0249	1.0467	0.7578	0.8044	1.2437	1.2453	<u>1.2495</u>	1.1541	1.2859
	AUC _(D,F) ↑	0.9288	0.9234	0.9231	0.9210	0.8873	0.9235	0.9247	<u>0.9540</u>	0.8877	0.9579
	$AUC_{(D,\tau)}$ ↑	0.0660	0.0562	0.0695	0.1278	0.0511	0.0676	0.1665	<u>0.1398</u>	0.1203	0.1333
	$AUC_{(F,\tau)}\downarrow$	0.0145	0.0126	0.0155	0.0395	0.0057	0.0123	0.0416	0.0279	0.0326	0.0194
Airport-3	AUC _{TD} ↑	0.9948	0.9796	0.9927	1.0488	0.9384	0.9916	1.0911	1.0945	1.0080	<u>1.0912</u>
	AUC _{BS} ↑	0.9144	0.9108	0.9077	0.8815	0.8816	0.9117	0.8831	<u>0.9268</u>	0.8551	0.9385
	AUC _{TDBS} ↑	0.0516	0.0436	0.0540	0.0883	0.0454	0.0553	0.1249	0.1119	0.0877	<u>0.1139</u>
	AUC _{ODP} ↑	0.9804	0.9670	0.9772	1.0094	0.9327	0.9793	1.0496	<u>1.0666</u>	0.9754	1.0718
	AUC(D,F) ↑	0.9526	0.9566	0.9836	0.9840	0.7508	0.9239	0.9841	<u>0.9933</u>	0.9173	0.9961
	$AUC_{(D,\tau)}$ ↑	0.0736	0.3747	0.4437	0.4071	0.1172	0.4229	0.6476	0.4350	0.0931	<u>0.5110</u>
	$AUC_{(F,\tau)}\downarrow$	0.0248	0.1053	0.0942	0.0267	0.0749	0.1646	0.1044	0.0924	0.0311	0.0427
Airport-4	AUC _{TD} ↑	1.0262	1.3313	1.4273	1.3911	0.8679	1.3467	1.6317	1.4283	1.0104	<u>1.5071</u>
	AUC _{BS} ↑	0.9278	0.8513	0.8894	0.9573	0.6759	0.7593	0.8798	0.9008	0.8862	0.9534
	AUC _{TDBS} ↑	0.0489	0.2693	0.3496	0.3804	0.0423	0.2583	0.5432	0.3426	0.0620	0.4684
	AUC _{ODP} ↑	1.0015	1.2260	1.3332	1.3644	0.7930	1.1822	1.5273	1.3358	0.9793	<u>1.4645</u>

ROC curves on the Airport-1 dataset

ROC curves on the Airport-2 dataset

Noise robustness

Dataset	AUC	RX	LRASR	GTVLRR	AUTO-AD	RGAE	DeCNN-AD	PTA	PCA-TLRSR	LARTVAD	WMS-LRTR
	AUC(D,F) ↑	0.9267	0.7543	0.6208	0.7905	0.8067	0.7806	0.9740	0.8109	0.8602	0.9755
	$AUC_{(D,\tau)}$ \uparrow	0.5386	0.5523	0.5122	0.2924	0.3427	0.5665	0.5110	0.5785	0.7330	0.4833
	$AUC_{(F,\tau)}\downarrow$	0.2453	0.3667	0.4267	0.0607	0.0630	0.3506	0.1056	0.3105	0.5712	0.0491
Noisy Beach-3	AUC _{TD} ↑	1.4652	1.3066	1.1330	1.0829	1.1494	1.3470	<u>1.4850</u>	1.3894	1.5932	1.4589
	AUC _{BS} ↑	0.6814	0.3876	0.1941	0.7297	0.7437	0.4300	<u>0.8684</u>	0.5004	0.2889	0.9264
	AUC _{TDBS} ↑	0.2933	0.1856	0.0854	0.2316	0.2797	0.2158	<u>0.4054</u>	0.2680	0.1618	0.4342
	AUC _{ODP} ↑	1.2200	0.9400	0.7063	1.0221	1.0864	0.9964	<u>1.3794</u>	1.0790	1.0220	1.4097
	AUC(D,F) ↑	0.6873	0.5919	0.5124	0.6794	0.4518	0.5492	0.9085	0.6180	0.6893	0.9281
	$AUC_{(D,\tau)}$ ↑	0.4440	<u>0.4611</u>	0.4061	0.2357	0.0781	0.4445	0.3519	0.4470	0.6803	0.2803
	$AUC_{(F,\tau)}\downarrow$	0.3539	0.4127	0.3971	0.1358	<u>0.0955</u>	0.4177	0.1543	0.3956	0.6219	0.0714
Noisy Urban-3	AUC _{TD} ↑	1.1312	1.0530	0.9185	0.9151	0.5299	0.9937	<u>1.2604</u>	1.0650	1.3696	1.2084
-	AUC _{BS} ↑	0.3334	0.1791	0.1153	0.5436	0.3563	0.1315	<u>0.7541</u>	0.2225	0.0674	0.8567
	AUC _{TDBS} ↑	0.0901	0.0484	0.0090	0.0998	0.0175	0.0268	<u>0.1976</u>	0.0514	0.0583	0.2089
	AUC_{ODP} \uparrow	0.7774	0.6403	0.5214	0.7792	0.4344	0.5760	<u>1.1061</u>	0.6695	0.7477	1.1370

Ablation study

Dataset	Without PCA		Without WTNN		Without WMS		Without PnP Prior		WMS-LRTR	
Dataset	AUC _(D,F) ↑	Time(s)	AUC _(D,F) ↑	Time(s)	$AUC_{(D,F)}$ \uparrow	Time(s)	AUC _(D,F) ↑	Time(s)	$AUC_{(D,F)}$ \uparrow	Time(s)
Airport-1	0.9076	14801.741	0.8294	226.314	0.9350	46.210	0.9240	195.416	0.9435	222.551
Airport-2	0.9322	12431.595	0.9585	96.175	0.9627	26.713	0.9441	62.733	0.9704	92.963
Airport-3	0.9274	15124.256	0.9529	271.938	0.9546	132.316	0.9533	179.844	0.9579	297.676
Airport-4	0.9779	13547.221	0.9914	138.498	0.9952	41.520	0.9906	96.701	0.9961	130.514
Average	0.9363	13976.203	0.9331	183.231	0.9619	61.690	0.9530	133.674	0.9670	185.926

Runtime comparisons

Dataset	RX	LRASR	GTVLRR	AUTO-AD	RGAE	DeCNN-AD	PTA	PCA-TLRSR	LARTVAD	WMS-LRTR
Airport-1	0.102	36.594	214.276	53.080	151.695	56.391	41.515	5.185	46.579	222.551
Airport-2	0.387	52.394	223.684	24.520	144.780	61.706	30.623	5.322	51.808	92.963
Airport-3	0.089	47.754	171.489	20.675	152.961	73.266	36.622	21.625	40.472	297.676
Airport-4	0.092	40.181	180.609	26.694	156.080	77.445	33.261	22.451	55.220	130.514
Average	0.168	44.231	197.515	31.242	151.379	67.202	35.505	13.646	48.520	185.926

Multidirectional analysis

Dataset	Index	Н	V	S	М
Airport-1	AUC _(D,F) ↑	0.9428	0.9415	0.9412	0.9435
Airport-2	AUC _(D,F) ↑	0.9679	0.9686	0.9629	0.9704
Airport-3	AUC _(D,F) ↑	0.9547	0.9526	0.9577	0.9579
Airport-4	AUC _(D,F) ↑	0.9958	0.9956	0.9950	0.9961

Convergence analysis

Block-size analysis

Dataset	Index	2×2	3×3	4×4	5×5
Airport 1	AUC _(D,F) ↑	0.9435	0.9424	0.9379	0.9335
Airport-1	Time(s)	222.551	240.222	313.199	506.953
Alum out 0	AUC _(D,F) ↑	0.9704	0.9663	0.9659	0.9612
Airport-2	Time(s)	92.963	111.301	132.522	204.909
Airport 2	AUC _(D,F) ↑	0.9579	0.9597	0.9587	0.9595
Airport-5	Time(s)	297.676	358.482	419.583	494.698
Alum aut 4	AUC _(D,F) ↑	0.9961	0.9960	0.9953	0.9955
Airport-4	Time(s)	130.514	150.457	179.795	278.522

・ロト・西ト・ヨト・ヨー うへぐ

Outline

Introduction

Plug-and-Play TLRA

Multidirectional Sparse TLRA

Future Work

Future Work

► Tuning-free parameter ⇒ deep unfolding networks

- F. Wu, T. Zhang, L. Li, Y. Huang, Z. Peng, RPCANet: Deep Unfolding RPCA Based Infrared Small Target Detection, IEEE/CVF Winter Conference on Applications of Computer Vision, 2024
- J. Zhang, B. Ghanem, ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing, IEEE Conference on Computer Vision and Pattern Recognition, 2018
- K. Gregor, Y. LeCun, Learning Fast Approximations of Sparse Coding, International Conference on Machine Learning, 2010
- ► Low complexity ⇒ parallel and distributed computing
 - K. Yu, Z. Wu, J. Sun, Y. Zhang, Y. Xu, Z. Wei, Accelerating Hyperspectral Anomaly Detection With Enhanced Multivariate Gaussianization Based on FPGA, IEEE Transactions on Geoscience and Remote Sensing, 2024
 - Q. Du, B. Tang, .W Xie, W. Li, Parallel and Distributed Computing for Anomaly Detection From Hyperspectral Remote Sensing Imagery, Proceedings of the IEEE, 2021
 - J. Lei, G. Yang, W. Xie, Y. Li, X. Jia, A Low-Complexity Hyperspectral Anomaly Detection Algorithm and Its FPGA Implementation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020

References

- J. Liu, J. Jin, X. Xiu, W. Liu, J. Zhang, Exploiting Weighted Multidirectional Sparsity for Prior Enhanced Anomaly Detection in Hyperspectral Images, Remote Sensing, 2025
- J. Liu, M. Feng, X. Xiu, X. Zeng, J. Zhang, Tensor Low-Rank Approximation via Plug-and-Play Priors for Anomaly Detection in Remote Sensing Images, IEEE Transactions on Instrumentation and Measurement, 2025

Thank you for your attention! xcxiu@shu.edu.cn