Learning to Select Features

Xianchao Xiu

Department of Automation

The Hong Kong Polytechnic University, March 20, 2025

Joint work with Anning Yang (SHU), Long Chen (SHU), Jianhao Li (SHU) and others

Outline

Introduction

Sparse Coding

Contrastive Learning

Deep Unfolding Networks

Large Language Models

Future Work

Unsupervised feature selection vs. Feature extraction

Select a subset of input features without labels

PCA

► Given $X = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) \in \mathbb{R}^{d \times n}$, principal component analysis (PCA) is $\begin{array}{l} \min_{W \in \mathbb{R}^{d \times p}} & \frac{1}{2} \|X - WW^\top X\|_{\mathrm{F}}^2 \\ \text{s.t.} & W^\top W = I_p \\ & & & \\ \min_{W \in \mathbb{R}^{d \times p}} & -\operatorname{Tr}(W^\top XX^\top W) \\ \text{s.t.} & W^\top W = I_p \end{array}$

Unsupervised feature selection by sparse PCA

$$\begin{array}{ll} \min_{W \in \mathbb{R}^{d \times p}} & -\operatorname{Tr}(W^\top X X^\top W) \\ \text{s.t.} & W^\top W = I_p, \ \|W\|_{2,0} \leq s \end{array}$$

The *i*-th feature can be measured by ||wⁱ|| since z_i = (w^{1⊤}, w^{2⊤}, ..., w^{d⊤})x_i
 The dimension number is often omitted when it does not cause ambiguity

SOTA

► Li-Nie-Bian et al, Sparse PCA via ℓ_{2,p}-Norm Regularization for Unsupervised Feature Selection, IEEE TPAMI, 2023

$$\begin{split} \min_{W} & -\operatorname{Tr}(W^{\top}XX^{\top}W) + \lambda \|W\|_{2,p}^{p} \ (0$$

 Li-Sun-Zhang, Unsupervised Feature Selection via Nonnegative Orthogonal Constrained Regularized Minimization, arXiv:2403.16966

$$\begin{split} \min_{W,Y} \quad & \operatorname{Tr}(Y^{\top}LY) + \alpha \|Y - X^{\top}W\|_{2,1} + \beta \|W\|_{2,1} + \gamma \|W\|_{\mathrm{F}}^2 \\ \text{s.t.} \quad & Y^{\top}Y = I, \ Y \geq 0 \end{split}$$

- ► Hu-Wang-Zhang et al, Bi-Level Spectral Feature Selection, IEEE TNNLS, 2025
- Jiao-Xue-Zhang, Sparse Learning-Based Feature Selection in Classification: A Multi-Objective Perspective, IEEE TETCI, 2025
- Li-Yu-Yang et al, Exploring Feature Selection With Limited Labels: A Comprehensive Survey of Semi-Supervised and Unsupervised Approaches, IEEE TKDE, 2024

Contribution

• (Q1) How to learn feature structures \Rightarrow Sparse coding

Xiu-Yang-Huang et al, Enhancing Unsupervised Feature Selection via Double Sparsity Constrained Optimization, 2025

▶ (Q2) How to learn data distributions \Rightarrow Contrastive learning

Xiu-Yang-Li, Sparse PCA Meets Contrastive Learning: A New Method for Unsupervised Feature Selection, 2025

- ► (Q3) How to learn regularization parameters ⇒ Deep unfolding networks Chen-Xiu, Tuning-Free Structured Sparse PCA via Deep Unfolding Networks, 2025
- ► (Q4) How to learn feature selection ⇒ Large language models Li-Xiu, LLM4FS: Leveraging Large Language Models for Feature Selection and How to Improve It, 2025

Outline

Introduction

Sparse Coding

Contrastive Learning

Deep Unfolding Networks

Large Language Models

Future Work

Model

► (Q1) How to learn feature structures

$$\begin{split} \min_{W} & -\operatorname{Tr}(W^{\top}XX^{\top}W) \\ \text{s.t.} & W^{\top}W = I, \ \|W\|_{2,0} \leq s \\ & \downarrow \\ \\ \min_{W} & -\operatorname{Tr}(W^{\top}XX^{\top}W) \\ \text{s.t.} & W^{\top}W = I, \ \|W\|_{2,0} \leq s_{1}, \ \|W\|_{0} \leq s_{2} \end{split}$$

- Double Sparsity Constrained Optimization for Feature Selection (DSCOFS)
 - ▶ $||W||_{2,0} \le s_1$: Global feature selection
 - ▶ $||W||_0 \le s_2$: Local feature selection

Proximal alternating method (PAM)

Model reformulation

$$\begin{split} \min_{W} & -\operatorname{Tr}(W^{\top}XX^{\top}W) \\ \text{s.t.} & W^{\top}W = I, \ \|W\|_{2,0} \le s_1, \ \|W\|_0 \le s_2 \\ & \downarrow \\ \\ \min_{W,Y,Z} & -\operatorname{Tr}(W^{\top}XX^{\top}W) \\ \text{s.t.} & W^{\top}W = I, \ \|Y\|_{2,0} \le s_1, \ \|Z\|_0 \le s_2 \\ & W = Y, \ W = Z \\ & \downarrow \\ \\ \\ \min_{W,Y,Z} & -\operatorname{Tr}(W^{\top}XX^{\top}W) + \mu_1 \|W - Y\|_{\mathrm{F}}^2 + \mu_2 \|W - Z\|_{\mathrm{F}}^2 \\ \text{s.t.} & W^{\top}W = I, \ \|Y\|_{2,0} \le s_1, \ \|Z\|_0 \le s_2 \end{split}$$

- ▶ Input: X, μ_1 , μ_2 , s_1 , s_2 , τ_1 , τ_2 , τ_3
- ▶ Initialize: (W^0, Y^0, Z^0)
- While not converged do
 - ▶ Update W^{k+1} by

$$\min_{W} - \operatorname{Tr}(W^{\top}XX^{\top}W) + \mu_{1}\|W - Y^{k}\|_{\mathrm{F}}^{2} + \mu_{2}\|W - Z^{k}\|_{\mathrm{F}}^{2} + \tau_{1}\|W - W^{k}\|_{\mathrm{F}}^{2}$$

s.t. $W^{\top}W = I$

• Update Y^{k+1} by

$$\min_{\mathbf{Y}} \quad \| W^{k+1} - \mathbf{Y} \|_{\mathrm{F}}^{2} + \tau_{2} \| \mathbf{Y} - \mathbf{Y}^{k} \|_{\mathrm{F}}^{2}$$

s.t. $\| \mathbf{Y} \|_{2,0} \le s_{1}$

• Update Z^{k+1} by

$$\min_{Z} \|W^{k+1} - Z\|_{\mathrm{F}}^{2} + \tau_{3}\|Z - Z^{k}\|_{\mathrm{F}}^{2}$$

s.t. $\|Z\|_{0} \leq s_{2}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④�♡

Convergence

Denote the objective function as

$$f(W, Y, Z) = -\operatorname{Tr}(W^{\top}XX^{\top}WX) + \mu_1 \|W - Y\|_{\mathrm{F}}^2 + \mu_2 \|W - Z\|_{\mathrm{F}}^2$$

• Suppose that $\beta \geq \max\{2(\lambda_0 + \lambda_1), 2m\lambda_2\}$

- ► (Theorem) Let {(W^k, Y^k, Z^k)} be the generated sequence. Then the following properties hold:
 - { $f(W^k, Y^k, Z^k)$ } is strictly nonincreasing
 - The sequence $\{(W^k, Y^k, Z^k)\}$ is bounded
 - ▶ $\lim_{k\to\infty} \|(W^{k+1}, Y^{k+1}, Z^{k+1}) (W^k, Y^k, Z^k)\|_{\mathrm{F}} = 0$
 - Any accumulation point (W*, Y*, Z*) of the sequence {(Wk, Yk, Zk)} is a stationary point in the sense that

 $0 \in \nabla f(W^*, Y^*, Z^*) + \mathrm{N}(W^*, Y^*, Z^*)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Compared methods
 - LapScore: He-Cai-Niyogi, NIPS, 2005
 - ▶ UDFS: Yang-Shen-Ma et al, IJCAI, 2011
 - SOGFS: Nie-Zhu-Li, IEEE TKDE, 2021
 - ▶ RNE: Liu-Ye-Li-Wang et al, KBS, 2020
 - SPCAFS: Li-Nie-Bian-Wu et al, IEEE TPAMI, 2023
 - ► FSPCA: Nie-Tian-Wang et al, IEEE TPAMI, 2023
 - SPCA-PSD: Zheng-Zhang-Liu et al, arXiv:2309.06202
- Implementation setups
 - Initialization: RandOrthhMat
 - ▶ Sparsity level: $s_1 \in \{10, 20, ..., 100\}, s_2 \in \{0.1, 0.2, ..., 0.9\} dp$
 - Stopping criteria:

$$\frac{|f(X^{k+1}, Y^{k+1}, Z^{k+1}) - f(X^k, Y^k, Z^k)|}{1 + |f(X^k, Y^k, Z^k)|} \le 10^{-3}$$

Synthetic datasets

◆□ > ◆□ > ◆ □ > ● □ >

Datasets	ALLfea	LapScore	UDFS	SOGFS	RNE	FSPCA	SPCAFS	SPCA-PSD	DSCOFS
COII 20	F7 74⊥4 02	$54.82{\pm}3.91$	58.71±3.47	$49.66{\pm}4.81$	$55.84{\pm}4.41$	$50.15{\pm}4.70$	$54.39{\pm}3.67$	56.57±3.05	60.51±4.63
COIL20	57.74±4.95	(100)	(100)	(100)	(90)	(100)	(100)	100)	(100)
LISDS	65 12-4 05	62.02±4.09	$59.52{\pm}2.97$	$55.58{\pm}3.07$	46.04±2.69	67.38±4.36	67.34±4.49	65.38±4.26	69.67±4.97
03F3	05.12±4.95	(90)	(60)	(100)	(100)	(60)	(100)	(100)	(100)
lung discrete	65 10+6 44	$59.29{\pm}6.33$	$68.58{\pm}6.99$	$65.12{\pm}6.89$	$64.05{\pm}6.65$	$60.19{\pm}6.55$	$71.37{\pm}7.68$	72.22±8.02	73.12±8.48
lung_discrete	05.10±0.44	(70)	(100)	(100)	(100)	(40)	(100)	(80)	(100)
CLIOMA	E6 94 - E 24	$58.88{\pm}3.96$	$56.80{\pm}4.85$	$57.44{\pm}6.16$	$58.32{\pm}7.31$	$47.92{\pm}4.61$	$50.60{\pm}5.02$	$\textbf{59.28}{\pm}\textbf{5.01}$	$60.88{\pm}6.31$
GLIOWA 50.84±5.24	(90)	(100)	(70)	(90)	(80)	(20)	(90)	(80)	
LIMIST	41.07-1.2.29	40.13±2.79	47.12±2.49	41.70±3.17	40.35±2.26	46.70±2.29	$46.78{\pm}2.51$	47.98±2.91	$\textbf{48.10}{\pm\textbf{3.01}}$
0101131	41.07±2.36	(100)	(40)	(100)	(90)	(100)	(90)	(90)	(70)
worpPIE10P	25.67±1.00	$28.94{\pm}1.66$	$41.42{\pm}3.18$	46.90±3.89	$29.57{\pm}2.96$	28.01±2.27	48.76±3.86	43.74±3.91	49.00±3.88
warprictor	25.07 ± 1.90	(100)	(20)	(20)	(90)	(50)	(50)	(70)	(40)
laolot	E7 90 1 2 92	52.21±2.76	41.95±2.07	49.31±2.32	47.12±2.06	53.62±2.36	53.04±2.33	$51.91{\pm}2.15$	59.67±3.46
Isolet 57.89±3.82	57.09±3.02	(100)	(100)	(100)	(90)	(100)	(100)	(70)	(100)
MSTAR 77.04±7.98	67.87±3.49	$78.15{\pm}5.80$	$73.74{\pm}5.89$	$69.16{\pm}6.03$	$75.52{\pm}6.22$	$80.80{\pm}5.95$	79.70±6.43	82.59±7.41	
	11.04±1.90	(90)	(90)	(100)	(100)	(70)	(100)	(90)	(100)
Average	55.81±4.71	53.02±3.62	56.53±4.04	54.93±4.53	51.31±4.30	53.69±4.47	59.14±4.44	59.60±4.47	62.94±5.27

► Real datasets: Accuracy (ACC) ↑

Datasets	ALLfea	LapScore	UDFS	SOGFS	RNE	FSPCA	SPCAFS	SPCA-PSD	DSCOFS
COIL 20	COIL 20 75 27±1.06	69.59±1.48	73.54±1.76	68.92±1.84	70.43±1.92	68.50±1.56	69.98±1.45	69.85±1.41	76.25±1.71
COIL20	15.51±1.90	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)
LISPS	61 12+2 01	$59.46{\pm}1.80$	$54.69 {\pm} 2.11$	$52.96{\pm}1.54$	45.36±1.93	62.00±1.87	60.98±2.37	60.90±2.02	64.06±2.58
03F3	01.12±2.01	(100)	(100)	(100)	(90)	(60)	(100)	(100)	(100)
lung discrete	62 85 + 5 13	56.79±3.99	64.84±5.09	59.70±5.24	61.63 ± 5.83	58.26±6.39	$69.09{\pm}5.61$	70.93±5.46	70.98±7.00
lung_uiscrete	02.05±5.15	(100)	(100)	(100)	(70)	(40)	(100)	(80)	(100)
CLIOMA	<u>49.96⊥5.72</u>	$51.03{\pm}2.48$	47.22±3.53	48.67±10.98	48.62±6.32	$21.94{\pm}5.28$	$24.14{\pm}6.97$	51.44±5.62	$51.06{\pm}6.19$
GLIOWA	40.00±5.72	(100)	(10)	(100)	(100)	(100)	(100)	(90)	(80)
LIMIST	63 67 + 1 85	$61.16{\pm}1.71$	$62.00{\pm}1.58$	$60.79{\pm}1.54$	$55.92{\pm}1.57$	$65.27{\pm}1.58$	$66.23{\pm}1.60$	66.25±1.72	67.24±1.85
0101151	05.07 ±1.05	(100)	(100)	(100)	(70)	(100)	(90)	(100)	(100)
worpPIE10P	25.07+2.88	$25.13{\pm}1.73$	46.18±3.30	52.12 ± 3.25	32.67±3.31	$23.90{\pm}2.01$	52.63±3.33	46.02±3.70	52.65±3.29
warpricitor	25.07 ±2.00	(90)	(20)	(20)	(90)	(50)	(50)	(70)	(50)
Isolat	75 72+1 70	69.77±1.20	$56.29{\pm}1.11$	67.40±1.44	64.27±0.95	70.79±1.12	$67.71 {\pm} 1.33$	$69.69 {\pm} 0.80$	$75.01{\pm}1.35$
Isolet /5.72±1.70	15.12±1.10	(100)	(100)	(100)	(90)	(100)	(100)	(100)	(100)
MSTAR 82.42±3.31	$74.10{\pm}1.76$	76.45±2.47	$76.39{\pm}1.70$	66.87±1.99	78.39±2.17	80.33±2.50	79.17±2.77	$\textbf{81.14{\pm}3.13}$	
	02.42_3.31	(100)	(90)	(100)	(80)	(90)	(100)	(90)	(100)
Average	61.89±3.07	58.38±2.02	60.15±2.62	60.87±3.44	55.72±2.98	56.13±2.75	61.39 ± 3.15	64.28±2.94	67.30±3.39

► Real datasets: Normalized mutual information (NMI) ↑

Ablation studies: Feature similarity rate (FSR)

 $\mathrm{FSR} = \frac{|\mathbb{T}_{\mathrm{our}} \cap \mathbb{T}_{2,0}|}{n}$

Datasets	$\ W\ _0 \le s_2$	ACC ↑	NMI ↑	FSR
COII 20	×	$60.25 {\pm} 4.52$	$75.89{\pm}1.58$	94
COIL20	\checkmark	$60.51{\pm}4.42$	$76.25{\pm}1.71$	04
LISDS	×	68.69±4.79	$61.25{\pm}2.39$	69
03F3	\checkmark	$69.67{\pm}4.97$	$64.06{\pm}2.58$	00
lung discrete	×	$71.42{\pm}7.95$	$69.74{\pm}6.11$	02
lung_discrete	\checkmark	$73.12{\pm}8.48$	$70.98{\pm}7.00$	92
CHOMA	×	$58.24{\pm}5.04$	$49.76{\pm}6.12$	85
GLIOWA	\checkmark	$60.88{\pm}6.31$	$51.06{\pm}6.19$	05
LIMIST	×	47.33±3.05	$67.44{\pm}1.88$	05
0101131	\checkmark	$48.10{\pm}3.01$	$67.24{\pm}1.85$	95
warpPIE10P	×	47.91±4.99	$51.19{\pm}3.79$	80
warprictor	\checkmark	$49.00{\pm}3.88$	$52.65{\pm}3.29$	09
Icolet	×	57.29 ± 3.44	72.82±1.87	52
isolet	\checkmark	$59.67{\pm}3.46$	$75.01{\pm}1.35$	52
MSTAR	×	82.06±6.87	81.01±2.41	00
MJTAN		82.59±7.41	81.14±3.13	39

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Introduction

Sparse Coding

Contrastive Learning

Deep Unfolding Networks

Large Language Models

Future Work

Motivation

▶ (Q2) How to learn data distributions

$$\begin{split} \min_{W} & \frac{1}{2} \| X - W W^{\top} X \|_{\mathrm{F}}^{2} \\ \mathrm{s.t.} & W^{\top} W = I, \ \| W \|_{2,0} \leq s_{1}, \ \| W \|_{0} \leq s_{2} \end{split}$$

▶ Convex loss: ℓ_1 -norm, $\ell_{2,1}$ -norm, quantile, Huber

Nonconvex loss: ℓ_p -norm, $\ell_{2,p}$ -norm, SCAD, MCP, capped ℓ_1

Contrastive learning: learn a discrimination model between positive and negative pairs

Motivation

▶ Let X = (x₁, x₂,..., x_n) and Y = (y₁, y₂,..., y_n) be two different pairs, the contrastive loss is defined as

$$L_c(X, Y) = \frac{1}{2n} \sum_{i=1}^n (L_c(\mathbf{x}_i) + L_c(\mathbf{y}_i))$$
$$L_c(\mathbf{x}_i) = -\log \frac{\exp(s(\mathbf{x}_i, \mathbf{y}_i)/\tau)}{\sum_{j=1, j \neq i}^n \exp(s(\mathbf{x}_i, \mathbf{x}_j)/\tau) + \sum_{j=1}^n \exp(s(\mathbf{x}_i, \mathbf{y}_j)/\tau)}$$
$$L_c(\mathbf{y}_i) = -\log \frac{\exp(s(\mathbf{y}_i, \mathbf{x}_i)/\tau)}{\sum_{j=1, j \neq i}^n \exp(s(\mathbf{y}_i, \mathbf{y}_j)/\tau) + \sum_{j=1}^n \exp(s(\mathbf{y}_i, \mathbf{x}_j)/\tau)}$$

▶ $s(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{y}$ is the similarity metric, τ is the temperature parameter

A simple framework for contrastive learning of visual representations <u>T Chen</u>, <u>S Kornblith</u>, <u>M Norouzi</u>... - ... on machine learning, 2020 - proceedings.mlr.press ... In our contrastive learning, as positive pairs are computed in the same device, the model can exploit the local information leakage to improve prediction accuracy without improving ... ☆ 保存 奶 引用 被引用次数: 22684 相关文章 所有 24 个版本 ≫

Model

DSCOFS with contrastive learning (DSCOFS-CL)

$$\begin{split} \min_{W} & L_c(X, WW^\top X) \\ \text{s.t.} & W^\top W = I, \ \|W\|_{2,0} \leq s_1, \ \|W\|_0 \leq s_2 \\ & \downarrow \end{split}$$

$$\begin{split} \min_{W,Z} \quad & \lambda L_c(X,XZ) + (1-\lambda)L_c(W^\top X,W^\top XZ) \\ \text{s.t.} \quad & W^\top W = I, \ \|W\|_{2,0} \leq s_1, \ \|W\|_0 \leq s_2 \\ & \operatorname{rank}(Z) \leq r, \ \operatorname{Diag}(Z) = 0 \end{split}$$

rank(Z) ≤ r represents the global structure
 Diag(Z) = 0 avoids the case where Z = E

Architecture

DSCOFS-CL = Double Sparsity + Graph Learning + Contrastive Learning

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

Proximal alternating method (PAM)

$$\begin{split} \min_{W,Z} & \lambda L_c(X, XZ) + (1 - \lambda) L_c(W^\top X, W^\top XZ) \\ \text{s.t.} & W^\top W = I, \ \|W\|_{2,0} \leq s_1, \ \|W\|_0 \leq s_2 \\ & \operatorname{rank}(Z) \leq r, \ \operatorname{Diag}(Z) = 0 \\ & \Downarrow \\ & w_{,Z,Y,P,Q} & \lambda L_c(X, XZ) + (1 - \lambda) L_c(W^\top X, W^\top XZ) \\ & \text{s.t.} & \|P\|_{2,0} \leq s_1, \ \|Q\|_0 \leq s_2, \operatorname{rank}(Y) \leq r, \ \operatorname{Diag}(Z) = 0 \\ & W^\top W = I, \ Z = Y, W = P, \ W = Q \\ & \Downarrow \\ & w_{,Z,Y,P,Q} & \lambda L_c(X, XZ) + (1 - \lambda) L_c(W^\top X, W^\top XZ) + \mu \|W^\top W - I\|_F^2 \\ & + \alpha \|Z - Y\|_F^2 + \beta \|W - P\|_F^2 + \gamma \|W - Q\|_F^2 \\ & \text{s.t.} & \|P\|_{2,0} \leq s_1, \ \|Q\|_0 \leq s_2, \ \operatorname{rank}(Y) \leq r, \ \operatorname{Diag}(Z) = 0 \end{split}$$

- ▶ Input: X, λ, μ, α, β, γ, s₁, s₂, r, τ_1 , τ_2 , τ_3 , τ_4 , τ_5
- ▶ Initialize: $(W^0, Z^0, Y^0, P^0, Q^0)$
- While not converged do
 - ▶ Update W^{k+1} by

$$\min_{W} \quad (1 - \lambda) L_{c}(W^{\top}X, W^{\top}XZ^{k}) + \mu \|W^{\top}W - I\|_{\mathrm{F}}^{2} \\ + \beta \|W - P^{k}\|_{\mathrm{F}}^{2} + \gamma \|W - Q^{k}\|_{\mathrm{F}}^{2} + \tau_{1} \|W - W^{k}\|_{\mathrm{F}}^{2}$$

• Update Z^{k+1} by

$$\begin{split} \min_{Z} \quad \lambda L_c(X, XZ) + (1 - \lambda) L_c(W^{k+1, \top}X, W^{k+1, \top}XZ) \\ \quad + \alpha \|Z - Y^k\|_{\mathrm{F}}^2 + \tau_2 \|Z - Z^k\|_{\mathrm{F}}^2 \\ \text{s.t.} \quad \mathrm{Diag}(Z) = 0 \end{split}$$

- ► Update Y^{k+1}
- Update P^{k+1}
- Update Q^{k+1}

Define

ŧ

$$\begin{aligned} F(W, Z, Y, P, Q) &= \lambda L_c(X, XZ) + (1 - \lambda) L_c(W^\top X, W^\top XZ) \\ &+ \mu \| W^\top W - I \|_{\mathrm{F}}^2 + \alpha \| Z - Y \|_{\mathrm{F}}^2 + \beta \| W - P \|_{\mathrm{F}}^2 + \gamma \| W - Q \|_{\mathrm{F}}^2 \\ &+ \delta(Z) + \delta(Y) + \delta(P) + \delta(Q) \end{aligned}$$

- ▶ We call (W, Z, Y, P, Q) is a critical point if $0 \in \partial f(W, Z, Y, P, Q)$
- (Theorem) For each k, the sequence $\{(W^k, Z^k, Y^k, P^k, Q^k)\}$ generated by our PAM algorithm converges and $0 \in \partial f(W^*, Z^*, Y^*, P^*, Q^*)$ with

$$\lim_{k\to+\infty}(W^k,Z^k,Y^k,P^k,Q^k)=(W^*,Z^*,Y^*,P^*,Q^*)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Sufficient decreasing
- Lower bounds for iterations
- Kurdyka-Lojasiewicz properties

► Real datasets: Accuracy (ACC) ↑

Datasets	ALLfea	LapScore	UDFS	SOGFS	RNE	SPCAFS	SPCA-PSD	DSCOFS	SPCA-CL	DSCOFS-CL
COII 20	F7 74+4 02	54.82±3.91	58.71±3.47	49.66±4.81	55.84±4.41	54.39±3.67	56.57±3.05	60.51±4.63	60.31±3.49	61.32±5.18
COIL20	57.74±4.95	(100)	(100)	(100)	(90)	(100)	(100)	(100)	(90)	(80)
	65 12+4 05	62.02±4.09	59.52±2.97	55.58±3.07	46.04±2.69	67.34±4.49	65.38±4.26	69.67±4.97	$68.88 {\pm} 4.05$	70.82±4.77
03F3	05.12±4.95	(90)	(60)	(100)	(100)	(100)	(100)	(100)	(80)	(100)
CLIOMA	56 84 + 5 24	58.88 ± 3.96	$56.80 {\pm} 4.85$	57.44±6.16	58.32±7.31	$50.60{\pm}5.02$	$59.28 {\pm} 5.01$	$60.88 {\pm} 6.31$	61.48±6.20	63.16±7.46
GLIOWA 50.84±5.24	50.84±5.24	(90)	(100)	(70)	(90)	(20)	(90)	(80)	(40)	(50)
LIMIST	41 07+2 38	40.13±2.79	47.12±2.49	41.70±3.17	40.35±2.26	$46.78 {\pm} 2.51$	47.98±2.91	$48.10 {\pm} 3.01$	49.55±3.00	50.95±3.15
0101131	41.07 ±2.56	(100)	(40)	(100)	(90)	(90)	(90)	(70)	(60)	(70)
Isolet	57 90 + 3 92	52.21±2.76	41.95±2.07	49.31±2.32	47.12±2.06	$53.04{\pm}2.33$	$51.91{\pm}2.15$	59.67±3.46	60.53±3.75	63.22±3.50
ISOIEL 57.09±3.02	(100)	(100)	(100)	(90)	(100)	(70)	(100)	(90)	(90)	
MSTAR 77.04±7.98	67.87±3.49	78.15 ± 5.80	73.74±5.89	69.16±6.03	$80.80{\pm}5.95$	79.70±6.43	82.59±7.41	81.57±6.28	81.22±5.59	
	11.04±1.98	(90)	(90)	(100)	(100)	(100)	(90)	(100)	(100)	(100)
Average	59.28±4.88	55.99 ± 3.50	57.04±3.69	54.57±4.24	52.81±4.13	$58.83{\pm}4.00$	60.14±3.97	63.57±4.96	63.72±4.46	65.12±4.94

▶ Real datasets: Normalized mutual information (NMI) ↑

Datasets	ALLfea	LapScore	UDFS	SOGFS	RNE	SPCAFS	SPCA-PSD	DSCOFS	SPCA-CL	DSCOFS-CL
COII 20	COIL 00 75 07 1 1 0C	69.59±1.48	73.54±1.76	68.92±1.84	70.43±1.92	69.98±1.45	69.85±1.41	76.25±1.71	74.79±1.48	75.76±1.76
COIL20	/5.5/±1.90	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(90)
LISPS	61 12+2 01	$59.46{\pm}1.80$	$54.69 {\pm} 2.11$	$52.96{\pm}1.54$	$45.36{\pm}1.93$	60.98±2.37	$60.90 {\pm} 2.02$	64.06±2.58	$62.29{\pm}2.40$	63.95±2.67
03F5	01.12±2.01	(100)	(100)	(100)	(90)	(100)	(100)	(100)	(100)	(100)
CLIOMA	48 86+5 72	$51.03{\pm}2.48$	47.22±3.53	48.67±10.98	48.62±6.32	$24.14{\pm}6.97$	51.44±5.62	$51.06{\pm}6.19$	$50.95 {\pm} 4.10$	51.71±5.03
GLIOWIA	40.00±5.72	(100)	(10)	(100)	(100)	(100)	(90)	(80)	(60)	(70)
LIMIST	63 67+1 85	$61.16{\pm}1.71$	62.00 ± 1.58	60.79±1.54	$55.92{\pm}1.57$	$66.23 {\pm} 1.60$	$66.25{\pm}1.72$	$67.24{\pm}1.85$	$\textbf{69.98}{\pm}\textbf{1.84}$	70.54±1.70
0101131	03.07±1.85	(100)	(100)	(100)	(70)	(90)	(100)	(100)	(80)	(70)
Isolet	75 72+1 70	69.77±1.20	$56.29 {\pm} 1.11$	67.40±1.44	64.27±0.95	67.71±1.33	$69.69 {\pm} 0.80$	$75.01{\pm}1.35$	$75.41 {\pm} 1.51$	77.32±1.37
Isolet	15.12±1.10	(100)	(100)	(100)	(90)	(100)	(100)	(100)	(100)	(100)
MSTAR 82.42±3.31	$74.10{\pm}1.76$	76.45±2.47	$76.39{\pm}1.70$	66.87±1.99	80.33±2.50	$79.17 {\pm} 2.77$	$81.14{\pm}3.13$	$78.63 {\pm} 2.50$	78.88±1.60	
	(100)	(90)	(100)	(80)	(100)	(90)	(100)	(100)	(100)	
Average	67.86±2.76	$64.19{\pm}1.74$	61.70±2.09	62.52±3.17	58.58±2.45	$61.56{\pm}2.70$	66.22±2.39	69.13±2.80	$68.68 {\pm} 2.31$	69.69±2.36

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

► Friedman tests (*H*₀: There is no significant difference of compared methods)

Methods	Ranking	P-value	Hypothesis
LapScore	6.83		
UDFS	6.50		
SOGFS	7.50		
RNE	7.50	0.0001	Reject
SPCAFS	5.83	0.00001	Reject
SPCA-PSD	4.83		
DSCOFS	2.33		
SPCA-CL	2.33		
DSCOFS-CL	1.33		

Post-hoc Nemenyi tests

Outline

Introduction

Sparse Coding

Contrastive Learning

Deep Unfolding Networks

Large Language Models

Future Work

Motivation

► (Q3) How to learn regularization parameters

$$\min_{W,Z,Y,P,Q} \quad \lambda L_c(X,XZ) + (1-\lambda)L_c(W^{\top}X,W^{\top}XZ) + \mu \|W^{\top}W - I\|_{\rm F}^2 \\ + \alpha \|Z - Y\|_{\rm F}^2 + \beta \|W - P\|_{\rm F}^2 + \gamma \|W - Q\|_{\rm F}^2 \\ \text{s.t.} \quad \|P\|_{2,0} \le \mathfrak{s}_1, \ \|Q\|_0 \le \mathfrak{s}_2, \ \operatorname{rank}(Y) \le r, \ \operatorname{Diag}(Z) = 0$$

$$\blacktriangleright~\mu, lpha, eta, \gamma \in \{10^{-6}, 10^{-4}, 10^{-2}, 10^{0}, 10^{2}, 10^{4}, 10^{6}\}$$

▶
$$s_1 \in \{10, 20, \dots, 100\}$$

▶
$$s_2 \in \{0.1, 0.2, \dots, 0.5\} dp$$

$$r = 0.1d$$

 \blacktriangleright $\lambda = 0.5$

- From iterative optimization to deep unfolding networks
 - Gregor-LeCun, Learning Fast Approximations of Sparse Coding, ICML, 2010
 - Chen-Liu-Yin, Learning to optimize: A Tutorial for Continuous and Mixed-Integer Optimization, SCCM, 2024

Model

Consider structured sparse PCA

$$\min_{W} \quad \frac{1}{2} \| X - W W^{\top} X \|_{\mathrm{F}}^{2} + \lambda \| W \|_{2,1} + \mu \| W \|_{1}$$

s.t.
$$W^{\top} W = I$$

Alternating direction method of multipliers (ADMM)

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Update W-block

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Update Y-block

$$\begin{split} \min_{Y} \lambda \|Y\|_{2,1} &+ \frac{\alpha}{2} \|X^{k+1} - Y + \Lambda^{k} / \alpha\|_{\mathrm{F}}^{2} \\ &\downarrow \\ Y^{k+1} &= \mathrm{sign}(\|X^{k+1} + \Lambda^{k} / \alpha\|_{2}) \circ \max(\|X^{k+1} + \Lambda^{k} / \alpha\|_{2} - \lambda / \alpha, 0) \\ &\downarrow \\ Y^{k+1} &= \frac{X^{k+1} + \Lambda^{k} / \alpha}{\|X^{k+1} + \Lambda^{k} / \alpha\|_{2}} \mathrm{ReLU}(\|X^{k+1} + \Lambda^{k} / \alpha\|_{2} - \lambda / \alpha) \\ &\downarrow \\ Y^{k+1} &= \mathsf{GSoftNet}(X^{k+1} + \Lambda^{k} / \alpha, \lambda / \alpha) \end{split}$$

inear

YK

inear

ReLU

► Update Z-block

$$\begin{split} \min_{Z} \ \mu \|Z\|_{1} + \frac{\beta}{2} \|X^{k+1} - Z + \Pi^{k}/\beta\|_{\mathrm{F}}^{2} \\ & \Downarrow \\ Z^{k+1} = \operatorname{sign}(X^{k+1} + \Pi^{k}/\beta) \circ \max(|X^{k+1} + \Pi^{k}/\beta| - \mu/\beta, 0) \\ & \Downarrow \\ Z^{k+1} = \frac{X^{k+1} + \Pi^{k}/\beta}{|X^{k+1} + \Pi^{k}/\beta|} \operatorname{ReLU}(|X^{k+1} + \Pi^{k}/\beta| - \mu/\beta) \\ & \Downarrow \\ Z^{k+1} = \operatorname{SoftNet}(X^{k+1} + \Pi^{k}/\beta, \mu/\beta) \end{split}$$

► Input:
$$X, \lambda, \mu, \alpha, \beta$$

► Initialize: $(W^0, Y^0, Z^0, \Lambda^0, \Pi^0)$
► While $k = 1, ..., K$ do
► Update W^{k+1} by
 $W^{k+1} = \text{LargNet}(U, V^{\top})$
► Update Y^{k+1} by
 $Y^{k+1} = \text{GSoftNet}(X^{k+1} + \Lambda^k/\alpha, \lambda/\alpha)$
► Update Z^{k+1} by
 $Z^{k+1} = \text{SoftNet}(X^{k+1} + \Pi^k/\beta, \mu/\beta)$
► Update Λ^{k+1}, Π^{k+1} by
 $\Lambda^{k+1} = \text{Linear}(W^{k+1}, Y^{k+1}, \Lambda^k, \alpha), \Pi^{k+1} = \text{Linear}(W^{k+1}, Z^{k+1}, \Pi^k, \beta)$
► Output: Trained W

Architecture

- ▶ All papameters $(\lambda, \mu, \alpha, \beta)$ are trained in an end-to-end manner
- The loss is defined as

$$\text{Loss} = \frac{1}{2} \| X - \bar{W} \bar{W}^{\top} X \|_{\text{F}}^{2} + \lambda \| \bar{W} \|_{2,1} + \mu \| \bar{W} \|_{1}$$

Datasets	ALLfea	LapScore	UDFS	SOGFS	RNE	FSPCA	SPCAFS	SPCA-Net
COIL 20	58.97±4.99	$53.91{\pm}3.61$	56.70±3.09	49.66±3.63	55.16 ± 3.35	$51.71 {\pm} 3.05$	54.63±3.64	57.46±2.76
COIL20	(10)	(100)	(70)	(100)	(20)	(50)	(100)	(90)
Icolot	$59.18 {\pm} 3.19$	$52.55{\pm}2.83$	41.11 ± 1.71	48.93±2.69	$47.39{\pm}2.91$	$54.15{\pm}2.69$	$52.26{\pm}2.81$	58.43±4.31
Isolet	(10)	(100)	(100)	(100)	(80)	(70)	(100)	(100)
LIMIST	41.68±2.46	39.71±3.28	$38.64{\pm}1.61$	43.81±2.98	41.01±2.25	$46.58 {\pm} 2.34$	47.32±3.48	47.58±4.97
0101131	(10)	(100)	(40)	(80)	(90)	(100)	(80)	(70)
MCTAD	$80.81 {\pm} 8.76$	$68.21 {\pm} 4.57$	81.25±7.48	73.46±5.61	$77.82{\pm}6.16$	$78.74{\pm}5.20$	78.63±8.68	81.90±6.87
WIJTAK	(10)	(100)	(100)	(100)	(100)	(30)	(90)	(100)

► Real datasets: Accuracy (ACC) ↑

▶ Real datasets: Normalized mutual information (NMI) ↑

Datasets	ALLfea	LapScore	UDFS	SOGFS	RNE	FSPCA	SPCAFS	SPCA-Net
6011.00	76.04±1.69	69.01±1.53	69.12±1.17	68.03±1.59	70.76±2.07	$68.41{\pm}1.60$	70.29±1.31	72.21±2.68
COIL20	(10)	(100)	(80)	(100)	(100)	(100)	(100)	(90)
Icolat	$76.09 {\pm} 1.77$	69.86±1.26	56.73±1.05	67.15±1.45	64.74±1.28	71.12±1.11	$69.18{\pm}1.33$	71.80±1.59
Isolet	(10)	(100)	(100)	(100)	(90)	(80)	(100)	(100)
LIMIST	$64.07{\pm}1.76$	$61.23 {\pm} 2.15$	$55.43{\pm}1.50$	$61.46{\pm}2.03$	$56.08{\pm}1.80$	$64.94{\pm}1.65$	66.26±1.74	66.62±7.52
0101131	(10)	(100)	(80)	(70)	(60)	(100)	(100)	(70)
MSTAR	$83.96{\pm}3.14$	73.90±1.62	$78.18 {\pm} 3.64$	$76.56{\pm}1.54$	$78.26{\pm}2.51$	78.87±2.52	79.62±2.30	80.67±3.47
	(10)	(100)	(90)	(100)	(100)	(90)	(100)	(90)

Ablation studies

Datasets	Network	ACC ↑	NMI ↑
COIL 20	×	55.12±2.67	70.44±1.37
COIL20	\checkmark	$\textbf{57.46}{\pm}\textbf{2.76}$	72.21±2.68
Isolet	×	$51.84{\pm}2.82$	67.02±1.43
150101	\checkmark	$\textbf{58.43}{\pm}\textbf{4.31}$	$\textbf{71.80}{\pm}\textbf{1.59}$
LIMIST	×	40.65±2.29	55.88±1.62
0101131	\checkmark	47.58±4.97	66.62±7.52
MSTAR	×	80.65±6.47	80.53±2.41
MUSTAR	\checkmark	$\textbf{81.90{\pm}6.87}$	80.67±3.47

Datasets	Dynamic	ACC ↑	NMI ↑
COIL 20	×	56.71±3.83	71.49±3.67
COIL20	\checkmark	57.46±2.76	72.21±2.68
Icolat	×	52.06±3.71	68.91±2.36
Isolet	\checkmark	58.43±4.31	$\textbf{71.80}{\pm}\textbf{1.59}$
LIMICT	×	42.63±2.78	60.12±1.69
0101131	\checkmark	47.58±4.97	$66.62{\pm}7.52$
MSTAR	×	80.74±5.28	80.59±3.67
INISTAIX	\checkmark	$\textbf{81.90}{\pm}\textbf{6.87}$	80.67±3.47

Effect of deep unfolding stages

◆□ > ◆□ > ◆ □ > ● □ >

Outline

Introduction

Sparse Coding

Contrastive Learning

Deep Unfolding Networks

Large Language Models

Future Work

Motivation

From deep learning to large language models (LLMs)

- Cho-Cund-Srivastava et al, LMPriors: Pre-Trained Language Models as Task-Specific Priors, NeurIPS, 2022
- Han-Yoon-Arik et al, Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning, ICML, 2024
- Li-Tan-Liu, Exploring Large Language Models for Feature Selection: A Data-centric Perspective, SIGKDD, 2025

DeepSeek

- Guo-Yang-Zhang et al, DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning, arXiv:2501.12948
- Arrieta-Ugarte-Valle et al, o3-mini vs DeepSeek-R1: Which One is Safer? arXiv:2501.18438
- Muennighoff-Yang-Shi et al, S1: Simple Test-time Scaling, arXiv:2501.19393
- ► Gao-Jin-Ke et al, A Comparison of DeepSeek and Other LLMs, arXiv:2502.03688

Method

Dataset-specific Context

Using data collected via a telemarketing campaign at a Portuguese banking institution from 2008 to 2013, we wish to build a machine learning model that can predict whether a client will subscribe to a term deposit (target variable). The dataset contains a total of 16 features (e.g., age, marital status, whether the client has a housing loan). Prior to training the model, we first want to identify a subset of the 16 features that are most important for reliable prediction of the target variable.

Main System Prompt

For each feature input by the user, your task is to provide a feature importance score (between $\langle 0.0 \rangle$ and $\langle 1.0 \rangle$; larger value indicates greater importance) for predicting whether an individual will subscribe to a term deposit and a reasoning behind how the importance score was assigned. The results need to be written directly into a JSON file. Therefore, please do not include any extra text and return the results strictly in the given format. The scores for each feature should be different from one another.

Output Format Instruction

Here is an example output: "concept-1": "has credit in default ", "reasoning": "Clients with credits in default might be more hesitant to open new financial products due to their current financial situation and may be deemed a higher risk by the bank. Therefore, the score is 0.9.", "score": 0.9.

Main User Prompt

Provide a score and reasoning formatted according to the output schema above.

Method

Dataset-specific Context

Same as above

Main System Prompt

Please use the Random Forest (/ forward sequential selection / backward sequential selection / recursive feature elimination RFE / minimum redundancy maximum relevance selection MRMR / filtering by mutual information MI) model to directly analyze the dataset samples. This is a classification task, where "Class" represents the classification. Please analyze the importance scores of these features. The score range is [0.0, 1.0], and the score of each feature should be different. The output format is as follows, in JSON file format.

Output Format Instruction

Same as above

Main User Prompt

Same as above

- Compared methods
 - DeepSeek-R1 (2025-01-20)
 - GPT-o3mini (2025-01-31)
 - GPT-4.5preview (2025-02-27)
 - LASSO
 - Forward sequential selection (Forward)
 - Backward sequential selection (Backward)
 - Recursive feature elimination (RFE)
 - Minimum redundancy maximum relevance selection (MRMR)
 - Mutual information (MI)
 - Random feature selection (Random)

Statistics of datasets

Datasets	Samples	Features
Bank	45211	16
Credit-G	1000	20
Pima Indians Diabetes	768	8
Give Me Some Credit	120269	10

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

LLMs + Data-driven methods vs. LLMs vs. Data-driven methods

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

- More interesting things should be investigated
 - Consider large datasets with more features, especially larger than thousands
 - Apply DeepSeek-R1 with different parameters, including 7B, 14B, 32B, 70B
 - Try RAG and fine-tuning to improve the stability and reliability
 - Expand to regression tasks, analyze feature correlation, etc

Outline

Introduction

Sparse Coding

Contrastive Learning

Deep Unfolding Networks

Large Language Models

Future Work

Future Work

► AI for optimization

Future Work

- Ramamonjison-Yu-Li et al, NL4Opt Competition: Formulating Optimization Problems Based on Their Natural Language Descriptions, NeurIPS, 2022
- ▶ Yang-Wang-Lu et al, Large Language Models as Optimizers, ICLR, 2024
- AhmadiTeshnizi-Gao-Udell, OptiMUS: Scalable Optimization Modeling with (MI)LP Solvers and Large Language Models, ICML, 2024
- Gao-Jiang-Cai et al, StrategyLLM: Large Language Models as Strategy Generators, Executors, Optimizers, and Evaluators for Problem Solving, NeurIPS, 2024
- Romera-Paredes-Barekatain et al, Mathematical Discoveries from Program Search with Large Language Models, Nature, 2024
- Jiang-Shu-Qian et al, LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch, ICLR, 2025

Thank you for your attention xcxiu@shu.edu.cn