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最优化问题的一般形式

最优化问题一般可以描述为

min f(x)
s.t. x ∈ X

(1)

x = (x1, x2, · · · , xn)⊤ ∈ Rn 是决策变量

f : Rn → R 是目标函数
X ⊆ Rn 是约束集合或可行域, 可行域包含的点称为可行解或可行点
当 X = Rn 时, 问题 (1) 称为无约束优化问题
集合 X 通常可以由约束函数 ci(x) : Rn → R, i = 1, 2, · · · , m + l 表达为

X = {x ∈ Rn | ci(x) ≤ 0, i = 1, 2, · · · , m,

ci(x) = 0, i = m + 1, m + 2, · · · , m + l}
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最优化问题的一般形式

在所有满足约束条件的决策变量中, 使目标函数取最小值的变量 x∗ 称为优化
问题 (1) 的最优解, 即对任意 x ∈ X 都有

f(x) ≥ f(x∗)

如果求解目标函数 f 的最大值, 则“min”应替换为“max”
函数 f 的最小（最大）值不一定存在, 但其下（上）确界总是存在的
x 可以是矩阵、多维数组或张量等
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最优化问题的类型

线性规划 目标函数和约束函数均为线性函数的问题

整数规划 变量只能取整数的问题

非线性规划 目标函数和约束函数中至少有一个为非线性函数的问题

二次规划 目标函数是二次函数而约束函数是线性函数的问题

半定规划 极小化关于半正定矩阵的线性函数的问题

稀疏优化 最优解只有少量非零元素的问题

非光滑优化 包含非光滑函数的问题

低秩矩阵优化 最优解是低秩矩阵的问题

鲁棒优化、组合优化、随机优化、零阶优化、流形优化、分布式优化等
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实例

给定 b ∈ Rm, 矩阵 A ∈ Rm×n , 且向量 b 的维数远小于向量 x 的维数, 即
m ≪ n. 考虑线性方程组求解问题

Ax = b

方程组欠定, 存在无穷多个解
原始信号中有较多的零元素, 即稀疏解

(ℓ0)

min
x∈Rn

∥x∥0

s.t. Ax = b
(ℓ2)

min
x∈Rn

∥x∥2

s.t. Ax = b
(ℓ1)

min
x∈Rn

∥x∥1

s.t. Ax = b

压缩感知（compressive sensing）, 即通过部分信息恢复全部信息的解决方案
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稀疏优化

MATLAB 仿真
1 m = 128; n = 256;
2 A = randn(m, n); u = sprandn(n, 1, 0.1);
3 b = A * u;

若 A, b 满足一定的条件, 向量 u 也是 ℓ1 范数优化问题的唯一最优解
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稀疏优化

原点到仿射集 Ax = b 的投影

绝对值函数在零点处不可微, 即非光滑

A 通常是稠密矩阵, 甚至元素未知或者不能直接存储
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LASSO 问题

考虑带 ℓ1 范数正则项的优化问题

min
x∈Rn

µ∥x∥1 s.t. Ax = b (2)

⇓

min
x∈Rn

µ∥x∥1 + 1
2

∥Ax − b∥2
2 (3)

µ > 0 是给定的正则化参数
称为 LASSO（least absolute shrinkage and selection operator）

本课程大部分算法都将针对 (2) 和 (3) 给出

9 / 74



深度学习

深度学习（deep learning）是机器学习的一个子领域

常见的激活函数类型

Sigmoid 函数
t(z) = 1

1 + exp(−z)
Heaviside 函数

t(z) =

1, z ≥ 0
0, z < 0

ReLU 函数
t(z) = max{0, z}
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深度学习中的优化算法

典型的数学模型

min
x∈W

1
N

N∑
i=1

ℓ(f(ai, x), bi) + µφ(x)

随机梯度类算法
pytorch/caffe2: adadelta, adagrad, adam, nesterov, rmsprop, YellowFin
https://github.com/pytorch/pytorch/tree/master/caffe2/sgd
pytorch/torch: sgd, asgd, adagrad, rmsprop, adadelta, adam, adamax
https://github.com/pytorch/pytorch/tree/master/torch/optim
tensorflow: Adadelta, AdagradDA, Adagrad, ProximalAdagrad, Ftrl,
Momentum, adam, Momentum, CenteredRMSProp
https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/core/kernels/training_ops.cc
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向量范数的定义

定义 令记号 ∥ · ∥ : Rn → R+ 是一种非负函数, 如果满足

正定性 对于 ∀v ∈ Rn, 有 ∥v∥ ⩾ 0, 且 ∥v∥ = 0 当且仅当 v = 0n×1

齐次性 对于 ∀v ∈ Rn 和 α ∈ R, 有 ∥αv∥ = |α|∥v∥
三角不等式 对于 ∀v, w ∈ Rn, 均成立 ∥v + w∥ ⩽ ∥v∥ + ∥w∥

则称 ∥ · ∥ 是定义在向量空间 Rn 上的向量范数

最常用的向量范数

∥v∥p = (|v1|p + |v2|p + · · · + |vn|p)
1
p (p ≥ 1)

∥v∥∞ = max
1⩽j⩽n

|vj|
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向量范数的定义

不同范数所度量的距离分别具有怎样的特征呢?
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矩阵范数

ℓ1 范数 ∥A∥1 = ∑
i,j |Aij|

Frobenius 范数 ∥A∥F =
√∑

i,j A2
ij =

√
Tr(AA⊤)

算子范数是一类特殊的矩阵范数, 由向量范数诱导得到

∥A∥(m,n) = max
x∈Rn,∥x∥(n)=1

∥Ax∥(m)

p = 1 时, ∥A∥p=1 = max
∥x∥1=1

∥Ax∥1 = max
1⩽j⩽n

∑m
i=1 |aij|

p = 2 时, ∥A∥p=2 = max
∥x∥2=1

∥Ax∥2 =
√

λmax(A⊤A) , 又称为 A 的谱范数

p = ∞ 时, ∥A∥p=∞ = max
∥x∥∞=1

∥Ax∥∞ = max
1⩽i⩽m

∑n
j=1 |aij|
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矩阵范数

核范数

∥A∥∗ =
r∑

i=1
σi

矩阵内积

⟨A, B⟩ = Tr(AB⊤) =
m∑

i=1

n∑
j=1

aijbij

命题 设 A, B ∈ Rm×n, 则

|⟨A, B⟩| ⩽ ∥A∥F ∥B∥F

等号成立当且仅当 A 和 B 线性相关, 即柯西不等式

性质 同一矩阵空间内, 矩阵范数彼此之间是相互等价的
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梯度

定义 给定函数 f : Rn → R , 且 f 在点 x 的一个邻域内有意义, 若存在向量
g ∈ Rn 满足

lim
p→0

f(x + p) − f(x) − ⟨g, p⟩
∥p∥

= 0

其中 ∥ · ∥ 是任意的向量范数, 称 f 在点 x 处可微（或 Fréchet 可微）, g 为 f
在点 x 处的梯度, 记作

∇f(x) = [∂f(x)
∂x1

,
∂f(x)
∂x2

, · · · ,
∂f(x)
∂xn

]⊤

如果对区域 D 上的每一个点 x 都有 ∇f(x) 存在, 则称 f 在 D 上可微
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海瑟矩阵

定义 如果函数 f(x) : Rn → R 在点 x 处的二阶偏导数 ∂2f(x)
∂xi∂xj

都存在, 则 f

在点 x 处的海瑟矩阵为

∇2f(x) =



∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

∂2f(x)
∂x1∂x3

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

∂2f(x)
∂x2∂x3

· · · ∂2f(x)
∂x2∂xn... ... ... ...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

∂2f(x)
∂xn∂x3

· · · ∂2f(x)
∂x2

n


当 ∇2f(x) 在区域 D 上的每个点 x 处都存在时, 称 f 在 D 上二阶可微

若 ∇2f(x) 在 D 上还连续, 则称 f 在 D 上二阶连续可微
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梯度利普希茨连续

定义 给定可微函数 f , 若存在 L > 0, 对任意的 x, y ∈ dom f 有

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥

则称 f 是梯度利普希茨连续的, 相应利普希茨常数为 L

引理 设可微函数 f(x) 的定义域为 Rn 且为梯度 L -利普希茨连续的, 则函数
f(x) 有二次上界

f(y) ≤ f(x) + ∇f(x)⊤(y − x) + L

2
∥y − x∥2, ∀ x, y ∈ dom f

f(x) 定义域的要求可减弱为凸集
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梯度利普希茨连续

推论 设可微函数 f(x) 的定义域为 Rn 且存在一个全局极小点 x∗, 若 f(x)
为梯度 L-利普希茨连续的, 则对任意的 x 有

1
2L

∥∇f(x)∥2 ≤ f(x) − f(x∗)

证明 由于 x∗ 是全局极小点, 有

f(x∗) ≤ f(y) ≤ f(x) + ∇f(x)⊤(y − x) + L

2
∥y − x∥2

上式对任意的 y 均成立, 因此可对不等号右边取下确界

f(x∗) ≤ infy∈Rn{f(x) + ∇f(x)⊤(y − x) + L

2
∥y − x∥2}

= f(x) − 1
2L

∥∇f(x)∥2
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矩阵变量函数的导数

对于函数 f(X), 若存在矩阵 G ∈ Rm×n 满足

lim
V →0

f(X + V ) − f(X) − ⟨G, V ⟩
∥V ∥

= 0

其中 ∥ · ∥ 是任意矩阵范数, 称矩阵变量函数 f 在 X 处 Fréchet 可微, G 为 f
在 Fréchet 可微意义下的梯度, 记为

∇f(X) =



∂f

∂x11

∂f

∂x12
· · · ∂f

∂x1n
∂f

∂x21

∂f

∂x22
· · · ∂f

∂x2n... ... ...
∂f

∂xm1

∂f

∂xm2
· · · ∂f

∂xmn


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矩阵变量函数的导数

定义 如果对任意方向 V ∈ Rm×n, 存在矩阵 G ∈ Rm×n 满足

lim
V →0

f(X + V ) − f(X) − ⟨G, V ⟩
∥V ∥

= 0

⇓

lim
t→0

f(X + tV ) − f(X) − t⟨G, V ⟩
t

= 0

则称 f 关于 X Gâteaux 可微, G 为 f 在 X 处 Gâteaux 可微意义下的梯度

当 f 是 Fréchet 可微函数时, f 也是 Gâteaux 可微的, 且梯度相等

23 / 74



例

线性函数 f(X) = Tr(AX⊤B)

lim
t→0

f(X + tV ) − f(X)
t

= lim
t→0

Tr(A(X + tV )⊤B) − Tr(AX⊤B)
t

= Tr(AV ⊤B) = ⟨BA, V ⟩
⇒ ∇f(X) = BA

二次函数 f(X, Y ) = ∥XY − A∥2
F

f(X, Y + tV ) − f(X, Y ) = ∥X(Y + tV ) − A∥2
F − ∥XY − A∥2

F

= 2⟨tXV, XY − A⟩ + t2∥XV ∥2
F

= 2t⟨V, X⊤(XY − A)⟩ + O(t2)

⇒ ∂f
∂Y

= 2X⊤(XY − A)
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广义实值函数

在最优化领域, 经常涉及量取 inf（sup） 操作, 可能为无穷

定义 令 R := R ∪ {±∞} 为广义实数空间, 则映射

f : Rn → R

称为广义实值函数

规定
−∞ < α < ∞, ∀α ∈ R
(+∞) + (+∞) = +∞, (+∞) + α = +∞, ∀α ∈ R
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适当函数

定义 给定广义实值函数 f 和非空集合 X , 若存在 x ∈ X 使 f(x) < +∞, 并
且对任意的 x ∈ X 都有 f(x) > −∞, 则称函数 f 是关于集合 X 的适当函数

具体含义

至少有一处取值不为正无穷

处处取值不为负无穷

对于适当函数 f , 规定其定义域

dom f = {x | f(x) < +∞}

若无特殊说明, 定理中所讨论的函数均为适当函数
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闭函数

定义 设 f 为广义实值函数, α -下水平集定义为

Cα = {x | f(x) ≤ α }

定义 设 f 为广义实值函数, 上方图定义为

epi f = { (x, t) ∈ Rn+1 | f(x) ≤ t}
gg
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下半连续函数

定义 设 f 为广义实值函数, 若 epi f 为闭集, 则称 f 为闭函数

定义 设 f 为广义实值函数, 若对任意的 x ∈ Rn, 有

lim inf
y→x

f(y) ≥ f(x)

则 f(x) 为下半连续函数
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闭函数与下半连续函数

定理 设广义实值函数 f : Rn → R, 则以下命题等价
f(x) 的任意 α -下水平集都是闭集
f(x) 是下半连续的
f(x) 是闭函数

性质

若 f 与 g 均为适当的闭（下半连续）函数, 并且 dom f ∩ dom g ̸= ∅, 则
f + g 也是闭（下半连续）函数

若 f 为闭（下半连续）函数, 则 f(Ax + b) 也为闭（下半连续）函数
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凸集的几何定义

定义 若过集合 C 中的任意两点的直线都在 C 内, 则称 C 为仿射集, 即

x1, x2 ∈ C ⇒ θx1 + (1 − θ)x2 ∈ C, ∀θ ∈ R

定义 若连接集合 C 中的任意两点的线段都在 C 内, 则称 C 为凸集, 即

x1, x2 ∈ C ⇒ θx1 + (1 − θ)x2 ∈ C, ∀0 ⩽ θ ⩽ 1

(a) (b) (c)
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凸集的性质

若 S 是凸集, 则 kS = {ks | k ∈ R, s ∈ S} 是凸集

若 S 和 T 均是凸集, 则 S + T = {s + t | s ∈ S, t ∈ T } 是凸集

若 S 和 T 均是凸集, 则 S ∩ T 是凸集

证明 设 x, y ∈ S ∩ T 且 θ ∈ [0, 1]. 由于 S 和 T 均为凸集, 则

θx + (1 − θ)y ∈ S ∩ T

凸集的内部和闭包都是凸集

任意多凸集的交都是凸集
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凸组合和凸包

形如
x = θ1x1 + θ2x2 + · · · + θkxk

θ1 + · · · + θk = 1, θi ⩾ 0, i = 1, · · · , k

的点称为 x1, · · · , xk 的凸组合

集合 S 的所有点的凸组合构成的点集为 S 的凸包, 记为 conv S

conv S 是包含 S 的最小凸集
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仿射组合和仿射包

定义 形如
x = θ1x1 + θ2x2 + · · · + θkxk

θ1 + · · · + θk = 1, θi ∈ R, i = 1, · · · , k

的点称为 x1, · · · , xk 的仿射组合

集合 S 的所有点的仿射组合构成的点集为 S 的仿射包, 记为 affine S

affine S 是包含 S 的最小仿射集
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锥组合和凸锥

形如
x = θ1x1 + · · · + θkxk, θi > 0, i = 1, · · · , k

的点称为 x1, · · · , xk 的锥组合

若集合 S 中任意点的锥组合都在 S 中, 则称 S 为凸锥

锥组合不要求系数的和为 1
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超平面和半空间

任取非零向量 a ∈ Rn, 称 {x | a⊤x = b} 为超平面, {x | a⊤x ⩽ b} 为半空间

满足线性等式和不等式组点的集合 {x | Ax ⩽ b, Cx = d} 称为多面体

超平面是仿射集和凸集, 半空间是凸集但不是仿射集

多面体是有限个半空间和超平面的交
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分离超平面定理

定理 如果 C 和 D 是不相交的凸集, 则存在非零向量 a 和常数 b, 使得

a⊤x ⩽ b, ∀x ∈ C 且 a⊤x ⩾ b, ∀x ∈ D

即超平面 {x | a⊤x = b} 分离了 C 和 D

定理 如果存在非零向量 a 和常数 b, 使得

a⊤x < b, ∀x ∈ C 且 a⊤x > b, ∀x ∈ D

即超平面 {x | a⊤x = b} 严格分离了 C 和 D
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分离超平面的示意

在 R2 中的 2 个凸集使用超平面即可轻松划分, 但遇到非凸集合就必须使用
更加复杂的平面
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支撑超平面

定义 给定集合 C 及其边界点 x0, 如果 a ̸= 0 满足 a⊤x ⩽ a⊤x0, ∀x ∈ C, 则称
集合

{x | a⊤x = a⊤x0}
为 C 在边界点 x0 处的支撑超平面

定理 若 C 是凸集, 则 C 的任意边界点处都存在支撑超平面
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球和椭球

称空间中到点 xc 的距离小于等于定值 r 的集合为欧几里得球, 即

B(xc, r) = {x | ∥x − xc∥2 ⩽ r} = {xc + ru | ∥u∥2 ⩽ 1}

设形如

{x | (x − xc)⊤P −1(x − xc) ⩽ 1} = {xc + Au | ∥u∥2 ⩽ 1}

的集合为椭球, 其中 xc 为椭球中心, P 为对称正定, 且 A 非奇异

令 ∥ · ∥ 是任意一个范数, 称

{x | ∥x − xc∥ ⩽ r}

为中心为 xc 半径为 r 的范数球
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范数锥

形如
{(x, t) | ∥x∥ ⩽ t}

的集合为范数锥

使用 ∥ · ∥2 度量距离的锥为二次锥, 也称冰淇淋锥

Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}

Euclidean norm cone is called second-
order cone

x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

norm balls and cones are convex

Convex sets 2–8

范数球和范数锥都是凸集
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(半) 正定锥

记 Sn 为对称矩阵的集合, 即 Sn = {X ∈ Rn×n | X⊤ = X}

记 Sn
+ 为半正定矩阵的集合, 即 Sn

+ = {X ∈ Sn | X ⪰ 0}

记 Sn
++ 为正定矩阵的集合, 即 Sn

++ = {X ∈ Sn | X ≻ 0}

0
1

0.2

0.4

0.5 1

z

0.6

0.8

y

0.8

0 0.6

x

1

0.4-0.5
0.2

-1 0

对于矩阵
(

x y
y z

)
, 其特征值应全

部大于等于 0

⇓

{(x, y, z) | x ⩾ 0, z ⩾ 0, xz ⩾ y2}
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凸函数的定义

定义 设 f : Rn → R 为适当函数, 如果 dom f 是凸集, 且
f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

对所有 x, y ∈ dom f , 0 ≤ θ ≤ 1 都成立, 则称 f 是凸函数

若对所有 x, y ∈ dom f , x ̸= y, 0 < θ < 1, 有
f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

则称 f 是严格凸函数

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1

Convex functions 3–2
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一元凸函数的例

仿射函数 对任意 a, b ∈ R, ax + b 是 R 上的凸 (凹)函数

指数函数 对任意 a ∈ R, eax 是 R 上的凸函数

绝对值的幂 对 p ≥ 1, |x|p 是 R 上的凸函数

幂函数 对 α ≥ 1 或 α ≤ 0, xα 是 R++ 上的凸函数

幂函数 对 0 ≤ α ≤ 1, xα 是 R++ 上的凹函数

对数函数 log x 是 R++ 上的凹函数

Sigmoid 函数、Heaviside 函数、ReLU 函数 . . .
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多元凸函数的例

所有的仿射函数既是凸函数, 又是凹函数

f(x) = a⊤x + b

f(X) = Tr(A⊤X) + b =
m∑

i=1

n∑
j=1

AijXij + b

所有的范数都是凸函数

f(x) = ∥x∥p = (
n∑

i=1
|xi|p)1/p (p ≥ 1)

f(X) = ∥X∥2 = σmax(X) = (λmax(X⊤X))1/2
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强凸函数

定义 若存在常数 m > 0, 使得

g(x) = f(x) − m

2
∥x∥2

为凸函数, 则称 f(x) 为强凸函数

为了方便也称 f(x) 为 m-强凸函数

命题 设 f 为强凸函数且存在最小值, 则 f 的最小值点唯一

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1

Convex functions 3–2
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凸函数判定定理

定理 f(x) 是凸函数当且仅当对每个 x ∈ dom f , v ∈ Rn, 函数 g : R → R
是关于 t 的凸函数

g(t) = f(x + tv), dom g = {t | x + tv ∈ dom f}

例 f(X) = − log det X 是凸函数, 其中 dom f = Sn
++

证明 任取 X ≻ 0 以及方向 V ∈ Sn, 将 f 限制在直线 X + tV 上, 则

g(t) = − log det(X + tV )
= − log det X − log det(I + tX−1/2V X−1/2)

= − log det X −
n∑

i=1
log(1 + tλi)
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一阶条件

定理 对于定义在凸集上的可微函数 f , 则 f 是凸函数当且仅当

f(y) ≥ f(x) + ∇f(x)⊤(y − x) ∀x, y ∈ dom f

First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(

∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator

Convex functions 3–7

定理 设 f 为可微函数, 则 f 为凸函数当且仅当 dom f 为凸集且 ∇f 为单调
映射

(∇f(x) − ∇f(y))⊤(x − y) ≥ 0, ∀ x, y ∈ dom f
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二阶条件

定理 设 f 为定义在凸集上的二阶连续可微函数, 则 f 是凸函数当且仅当

∇2f(x) ⪰ 0 ∀x ∈ dom f

如果
∇2f(x) ≻ 0 ∀x ∈ dom f

则 f 是严格凸函数

例 最小二乘函数 f(x) = ∥Ax − b∥2
2

∇f(x) = 2A⊤(Ax − b), ∇2f(x) = 2A⊤A

对任意 A, 函数 f 都是凸函数
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上方图

定理 函数 f(x) 为凸函数当且仅当其上方图 epi f 是凸集

证明 (必要性) 若 f 为凸函数, 则对任意 (x1, y1), (x2, y2) ∈ epi f, t ∈ [0, 1] 有

ty1 + (1 − t)y2 ≥ tf(x1) + (1 − t)f(x2) ≥ f(tx1 + (1 − t)x2)

故 (tx1 + (1 − t)x2, ty1 + (1 − t)y2) ∈ epi f, t ∈ [0, 1]

(充分性) 若 epi f 是凸集, 则对任意 x1, x2 ∈ dom f, t ∈ [0, 1] 有

(tx1 + (1 − t)x2, tf(x1) + (1 − t)f(x2)) ∈ epi f

⇓

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)
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凸函数的判断方法

用定义验证（通常将函数限制在一条直线上）

利用一阶条件、二阶条件

直接研究 f 的上方图 epi f

说明 f 可由简单的凸函数通过保凸运算得到

非负加权和

与仿射函数复合

逐点取最大值

与标量向量函数复合
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非负加权和与仿射函数的复合

定理 (1) 若 f 是凸函数, 则 αf 是凸函数, 其中 α ≥ 0

定理 (2) 若 f1, f2 是凸函数, 则 f1 + f2 是凸函数

定理 (3) 若 f 是凸函数, 则 f(Ax + b) 是凸函数

例

线性不等式的对数障碍函数

f(x) = −
m∑

i=1
log(bi − a⊤

i x), dom f = {x | a⊤
i x < bi, i = 1, · · · , m}

仿射函数的（任意）范数 f(x) = ∥Ax + b∥
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逐点取最大值

定理 (4) 若 f1, · · · , fm 是凸函数, 则
f(x) = max{f1(x), · · · , fm(x)}

是凸函数

例

分段线性函数
f(x) = max

i=1,··· ,m
(a⊤

i x + bi)

x ∈ Rn 的前 r 个最大分量之和

f(x) = x[1] + x[2] + · · · + x[r]

⇕
f(x) = max{xi1 + xi2 + · · · + xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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逐点取上界

定理 (5) 若对每个 y ∈ A, f(x, y) 是关于 x 的凸函数, 则

g(x) = sup
y∈A

f(x, y)

是凸函数

例

集合 C 上点到给定点 x 的最远距离

f(x) = sup
y∈C

∥x − y∥

对称矩阵 X ∈ Sn 的最大特征值

λmax(X) = sup
∥y∥2=1

y⊤Xy
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与函数的复合

定理 (6) 给定函数 g : Rn → R 和 h : R → R, 令

f(x) = h(g(x))

若 g 是凸函数, h 是凸函数且单调不减
g 是凹函数, h 是凸函数且单调不增 , 那么 f 是凸函数

例

如果 g 是凸函数, 则 exp g(x) 是凸函数
如果 g 是正值凹函数, 则 1/g(x) 是凸函数
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取下确界

定理 (7) 若 f(x, y) 关于 (x, y) 整体是凸函数, C 是凸集, 则
g(x) = inf

y∈C
f(x, y)

是凸函数

例

考虑函数 f(x, y) = x⊤Ax + 2x⊤By + y⊤Cy, 海瑟矩阵满足[
A B

B⊤ C

]
⪰ 0, C ≻ 0

则 f(x, y) 为凸函数. 对 y 求最小值得

g(x) = inf
y

f(x, y) = x⊤(A − BC−1B⊤)x

点 x 到凸集 S 的距离 dist(x, S) = inf
y∈S

∥x − y∥ 是凸函数
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凸函数的性质

命题 设 f(x) 是凸函数, 则 f(x) 的所有的 α -下水平集为凸集

引理 设 f(x) 是参数为 m 的可微强凸函数, 则如下不等式成立

g(y) ≥ f(x) + ∇f(x)⊤(y − x) + m

2
∥y − x∥2, ∀x, y ∈ dom f

证明 由强凸函数的定义有 g(x) = f(x) − m
2 ∥y − x∥2 是凸函数. 根据凸函数

的一阶条件知
g(y) ≥ g(x) + ∇g(x)⊤(y − x)

⇓

f(y) ≥ f(x) − m

2
∥x∥2 + m

2
∥y∥2 + (∇f(x) − mx)⊤(y − x)

= f(x) + ∇f(x)⊤(y − x) + m

2
∥y − x∥2
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次梯度

回顾可微凸函数 f 的一阶条件

f(y) ≥ f(x) + ∇f(x)⊤(y − x)

定义 设 f 为适当凸函数, x 为 dom f 中的一点. 若向量 g ∈ Rn 满足

f(y) ≥ f(x) + g⊤(y − x), ∀y ∈ dom f

则称 g 为函数 f 在点 x 处的一个次梯度. 进一步, 称集合

∂f(x) = {g | g ∈ Rn, f(y) ≥ f(x) + g⊤(y − x), ∀y ∈ dom f}

为 f 在点 x 处的次微分
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次梯度

g1 是点 x1 处的次梯度

g2, g3 是点 x2 处的次梯度
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例

绝对值函数 f(x) = |x|

欧几里得范数 f(x) = ∥x∥2

若 x ̸= 0, ∂f(x) = 1
∥x∥2

x, 若 x = 0, ∂f(x) = {g | ∥g∥2 ≤ 1}
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次梯度的性质

定理 设 f 是凸函数, 则 ∂f(x) 有如下性质

对任何 x ∈ dom f , ∂f(x) 是一个闭凸集（可能为空集）
如果 x ∈ int dom f , 则 ∂f(x) 非空有界集

命题 设凸函数 f(x) 在 x ∈ int dom f 处可微, 则

∂f(x) = {∇f(x)}

定理 设 f : Rn → R 为凸函数, x, y ∈ dom f , 则

(u − v)⊤(x − y) ≥ 0

其中 u ∈ ∂f(x), v ∈ ∂f(y)
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两个函数之和的次梯度

定理 设 f1, f2 : Rn → (−∞, +∞] 是凸函数, 则对任意的 x ∈ Rn 有

∂f1(x) + ∂f2(x) ⊆ ∂(f1 + f2)(x)

进一步, 若 int dom f1 ∩ dom f2 ̸= ∅, 则对任意的 x0 ∈ Rn 有

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x)

若 f(x) = α1f1(x) + α2f2(x), α1, α2 ≥ 0, 则 f(x) 的次微分

∂f(x) = α1∂f1(x) + α2∂f2(x)

Moreau-Rockafellar 定理
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函数族的上确界

定理 设 f1, f2, · · · , fm : Rn → (−∞, +∞] 均为凸函数, 令

f(x) = max{f1(x), f2(x), · · · , fm(x)}, ∀x ∈ Rn

对 x0 ∈
m∩

i=1
int dom fi , 定义 I(x0) = {i | fi(x0) = f(x0)} , 则

∂f(x0) = conv
∪

i∈I(x0)
∂fi(x0)

I(x0) 表示点 x0 处“有效”函数的指标

∂f(x0) 是点 x0 处“有效”函数的次微分并集的凸包

如果 fi 可微, ∂f(x0) = conv{∇fi(x0) | i ∈ I(x0)}
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例

分段线性函数
f(x) = max

i=1,2,··· ,m
{a⊤

i x + bi}

点 x 处的次微分是一个多面体

∂f(x) = conv{ai | i ∈ I(x)}, I(x) = {i | a⊤
i x + bi = f(x)}
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例

ℓ1 -范数
f(x) = ∥x∥1 = max

s∈{−1,1}n
s⊤x

点 x 处的次微分是

∂f(x) = J1 × · · · × Jn, Jk =


[−1, 1], xk = 0

{1}, xk > 0
{−1}, xk < 0
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全局和局部最优解

如果 f(x̄) ≤ f(x), ∀x ∈ X , 则称 x̄ 为全局极小解

如果存在 Nε(x̄) 使得 f(x̄) ≤ f(x), ∀x ∈ Nε(x̄) ∩ X , 则称 x̄ 为局部极小解

进一步, 如果有 f(x̄) < f(x), ∀x ∈ Nε(x̄) ∩ X 且 x ̸= x̄ 成立, 则称 x̄ 为严格
局部极小解

x

f(x)

全局极小解

严格局部极小解

非严格局部极小解
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收敛性

给定初始点 x0, 记算法迭代产生的点列为 {xk}

如果 {xk} 在某种范数 ∥ · ∥ 的意义下满足

lim
k→∞

∥xk − x∗∥ = 0

且收敛的点 x∗ 为一个局部（全局）极小解, 则称该算法依点列收敛到局部
（全局）极小解

如果从任意初始点 x0 出发, 算法都是依点列收敛到局部（全局）极小解
的, 则称该算法全局依点列收敛到局部（全局）极小解
记对应的函数值序列 {f(xk)}, 则称该算法（全局）依函数值收敛到局部
（全局）极小值
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收敛准则

对于无约束优化问题, 常用的收敛准则有

f(xk) − f ∗

max{|f ∗|, 1}
≤ ε1, ∥∇f(xk)∥ ≤ ε2

如果最优解未知, 通常使用相对误差

∥xk+1 − xk∥
max{∥xk∥, 1}

≤ ε3,
|f(xk+1) − f(xk)|
max{|f(xk)|, 1}

≤ ε4

对于约束优化问题, 还需要考虑约束违反度

ci(xk) ≤ ε5, i = 1, 2, · · · , m

|ci(xk)| ≤ ε6, i = m + 1, m + 2, · · · , m + l
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渐进收敛速度

设 {xk} 为算法产生的迭代点列且收敛于 x∗

Q-线性收敛 ∥xk+1 − x∗∥
∥xk − x∗∥

≤ a, a ∈ (0, 1)

Q-次线性收敛
lim

k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 1

Q-超线性收敛

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0

Q-二次收敛 ∥xk+1 − x∗∥
∥xk − x∗∥2 ≤ a, a > 0
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渐进收敛速度

点列 {2−k} 是 Q-线性收敛的

点列 {1/k} 是 Q-次线性收敛的

点列 {2−2k} 是 Q-二次收敛的, 也是 Q-超线性收敛的
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一般来说, 选择 Q-超线性收敛和 Q-二次收敛的算法
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Q&A
Thank you!
感谢您的聆听和反馈


