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约束优化问题

考虑约束优化问题

min
x∈Rn

f(x)

s.t. x ∈ X

相比于无约束问题的困难

x 不能随便取值, 梯度下降法所得点不一定在可行域内
最优解处目标函数的梯度不一定为零向量

将约束优化问题转化为无约束优化问题处理

罚函数法

增广拉格朗日函数法
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等式约束的二次罚函数法

考虑仅包含等式约束的约束优化问题

min
x

f(x)

s.t. ci(x) = 0, i ∈ E

定义 定义二次罚函数为

PE(x, σ) = f(x) + 1
2
σ

∑
i∈E

c2
i (x)

其中等式右端第二项称为罚函数, σ > 0 称为罚因子

对不满足约束的点进行惩罚, 被称为外点罚函数
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例

考虑优化问题
min x+

√
3y

s.t. x2 + y2 = 1

容易求得最优解为 (−1
2 ,−

√
3

2 )⊤

考虑二次罚函数 PE(x, y, σ) = x+
√

3y + σ
2 (x2 + y2 − 1)2 (σ = 1, σ = 10)
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例

考虑优化问题
min − x2 + 2y2

s.t. x = 1

容易求得最优解为 (1, 0)⊤, 然而考虑罚函数

PE(x, y, σ) = −x2 + 2y2 + σ

2
(x− 1)2

对任意的 σ ≤ 2, 罚函数无下界
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二次罚函数法算法

算法 二次罚函数法

1 给定 σ1 > 0, x0, k ← 1．罚因子增长系数 ρ > 1
2 while 未达到收敛准则 do
3 以 xk 为初始点, 求解 xk+1 = arg min

x
PE(x, σk)

4 选取 σk+1 = ρσk

5 k ← k + 1
6 end while
==========

σk 增长过快会使子问题求解困难, σk 增长过慢则会增加迭代次数

检测到迭代点发散就应该立即终止迭代并增大罚因子

为保证收敛, 子问题求解误差需要趋于零
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收敛性分析

定理 设 xk+1 是 PE(x, σk) 的全局极小解, σk 单调上升趋于无穷, 则 xk 的每
个极限点 x∗ 都是原问题的全局极小解

证明 设 x̄ 为原问题的极小解. 由 xk+1 为 PE(x, σk) 的极小解, 得
PE(xk+1, σk) ⩽ PE(x̄, σk), 即

f(xk+1) + σk

2
∑
i∈E

c2
i (xk+1) ⩽ f(x̄) + σk

2
∑
i∈E

c2
i (x̄) = f(x̄)

⇓∑
i∈E

c2
i (xk+1) ⩽ 2

σk

(f(x̄)− f(xk+1))

设 x∗ 是 xk 的一个极限点, 令 k →∞, 得 ∑
i∈E c

2
i (x∗) = 0. 易知 x∗ 为原问题

的可行解, 又 f(xk+1) ⩽ f(x̄), 取极限得 f(x∗) ⩽ f(x̄), 故 x∗ 为全局极小解
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收敛性分析

定理 设 f(x) 与 ci(x) (i ∈ E) 连续可微, 正数序列 εk → 0, σk → +∞. 子问
题的解 xk+1 满足

∥∇xPE(xk+1, σk)∥ ≤ εk

而对 xk 的任何极限点 x∗, 都有 {∇ci(x∗), i ∈ E} 线性无关, 则 x∗ 是等式约束
最优化问题的 KKT 点, 且

lim
k→∞

(−σkci(xk+1)) = λ∗
i , ∀i ∈ E

其中 λ∗
i 是约束 ci(x∗) = 0 对应的拉格朗日乘子

精确求解 ⇒ 精度需要越来越高
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分析 KKT 条件

原问题的 KKT 条件

∇f(x∗)−
∑
i∈E

λ∗
i∇ci(x∗) = 0

ci(x∗) = 0, ∀i ∈ E

添加罚函数项问题的 KKT 条件

∇f(x) +
∑
i∈E

σci(x)∇ci(x) = 0

假设两个问题收敛到同一点, 对比 KKT 条件式成立

σci(x) ≈ −λ∗
i , ∀i ∈ E

为使约束 ci(x) = 0 成立, 需要 σ →∞
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分析数值困难

考虑罚函数 PE(x, σ) 的海瑟矩阵

∇2
xxPE(x, σ) = ∇2f(x) +

∑
i∈E

σci(x)∇2ci(x) + σ∇c(x)∇c(x)⊤

⇓
∇2

xxPE(x, σ) ≈ ∇2
xxL(x, λ∗) + σ∇c(x)∇c(x)⊤

∇2
xxPE(x, σ) 条件数越来越大, 子问题的难度也会相应地增加

在实际应用中, 不可能令罚因子趋于正无穷
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一般约束问题的二次罚函数法

考虑一般约束问题
min f(x)
s.t. ci(x) = 0, i ∈ E

ci(x) ⩽ 0, i ∈ I

定义二次罚函数

P (x, σ) = f(x) + 1
2
σ

[∑
i∈E

c2
i (x) +

∑
i∈I

c̃2
i (x)

]

其中 c̃i(x) = max{ci(x), 0}
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二次罚函数法的优缺点

优点

将约束优化问题转化为无约束优化问题

二次罚函数形式简洁直观广泛使用

缺点

需要 σ →∞, 导致海瑟矩阵条件数过大
对于不等式约束的问题可能不存在二次可微性质, 光滑性降低
不精确, 与原问题最优解存在距离
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应用举例: LASSO 问题

考虑 LASSO 问题
min

x

1
2
∥Ax− b∥2 + µ∥x∥1

以及基追踪（BP）问题
min ∥x∥1

s.t. Ax = b

写成二次罚函数法形式

min
x

∥x∥1 + σ

2
∥Ax− b∥2

仅在 µ 趋于 0 时, LASSO 问题的解收敛于 BP 问题的解

当 µ 较小时问题病态, 收敛较慢, 可逐渐缩小 µ 的值求解子问题逼近
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LASSO 问题罚函数法算法

1 给定初值 x0, 最终参数 µ, 初始参数 µ0, 因子 γ ∈ (0, 1), k ← 0
2 while µk ≥ µ do
3 以 xk 为初值, 求解问题 xk+1 = arg min

x
{1

2∥Ax− b∥2 + µk∥x∥1}
4 if µk = µ then
5 停止迭代, 输出 xk+1

6 else
7 更新罚因子 µk+1 = max{µ, γµk}
8 k ← k + 1
9 end if
10 end while
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LASSO 问题——对比罚函数法和次梯度法

次梯度法 µ = 10−3

罚函数法 µ0 = 10, γ = 0.1, α = 0.0002
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其他类型的罚函数法: 内点罚函数法

考虑不等式约束问题
min f(x)
s.t. ci(x) ⩽ 0, i ∈ I

定义 定义对数罚函数

PI(x, σ) = f(x)− σ
∑
i∈I

ln(−ci(x))

始终要求自变量 x 不能违反约束, 适用于不等式约束优化问题

当 x 趋于可行域边界时, PI(x, σ) 会趋于正无穷, 这说明对数罚函数的极小值
严格位于可行域内部, 应调整罚因子 σ 使其趋于 0
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对数罚函数法算法

算法 对数罚函数法

1 给定 σ0 > 0, 可行解 x0, k ← 0．罚因子缩小系数 ρ ∈ (0, 1)
2 while 未达到收敛准则 do
3 以 xk 为初始点, 求解 xk+1 = arg min

x
PI(x, σk)

4 选取 σk+1 = ρσk

5 k ← k + 1
6 end while
==========

初始点 x0 必须是一个可行点

当 σ 趋于 0 时存在数值困难

常用的收敛准则 |σk
∑
i∈I

ln(−ci(xk+1))| ≤ ε
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例

考虑优化问题
min x2 + 2xy + y2 + 2x− 2y
s.t. x ⩾ 0, y ⩾ 0

容易求得最优解为 (0, 1), 考虑对数罚函数 (σ = 1, σ = 0.4)
PI(x, y, σ) = x2 + 2xy + y2 + 2x− 2y − σ(ln x+ ln y)

0.5 1 1.5 2

0.5

1

1.5

2

0.5 1 1.5 2

0.5

1

1.5

2

18 / 40



其他类型的罚函数法: 精确罚函数法

二次罚函数存在数值困难, 并与原问题的解存在误差

精确罚函数是一种问题求解时不需要令罚因子趋于正无穷（或零）的罚函数

定义 一般约束优化问题的 ℓ1 罚函数

P (x, σ) = f(x) + σ

[∑
i∈E
|ci(x)|+

∑
i∈I

c̃i(x)
]

定理 设 x∗ 是一般约束优化问题的一个严格局部极小解, 且满足 KKT 条件,
其对应的拉格朗日乘子为 λ∗

i , i ∈ E ∪ I, 则当罚因子 σ > σ∗ 时, x∗ 也为
P (x, σ) 的一个局部极小解, 其中

σ∗ = ∥λ∗∥∞
def= max

i
|λ∗

i |
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精确罚函数法算法

算法 精确罚函数法

1 给定 σ1 > 0, x0, k ← 1．罚因子增长系数 ρ > 1
2 while 未达到收敛准则 do
3 以 xk 为初始点, 求解

xk+1 = arg min
x
{f(x) + σ[

∑
i∈E
|ci(x)|+

∑
i∈I

c̃i(x)]}

4 选取 σk+1 = ρσk

5 k ← k + 1
6 end while
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二次罚函数法的数值困难

对于等式约束问题
min

x
f(x)

s.t. ci(x) = 0, i ∈ E

二次罚函数
min

x
PE(x, σ) = f(x) + 1

2
σ

∑
i∈E

c2
i (x)

增广拉格朗日函数

Lσ(x, λ) = f(x) +
∑
i∈E

λici(x) + 1
2
σ

∑
i∈E

c2
i (x)
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等式约束问题的增广拉格朗日函数法

在第 k 步迭代, 给定罚因子 σk 和乘子 λk, 最小值点 xk+1 满足梯度条件

∇xLσk
(xk+1, λk) = ∇f(xk+1) +

∑
i∈E

(λk
i + σkci(xk+1))∇ci(xk+1) = 0

对比等式约束问题的 KKT 条件

∇f(x∗) +
∑
i∈E

λ∗
i∇ci(x∗) = 0

对充分大的 k, 有

λ∗
i ≈ λk

i + σkci(xk+1) ⇒ ci(xk+1) ≈ 1
σk

(λ∗
i − λk

i )
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等式约束问题的增广拉格朗日函数法

算法 增广拉格朗日函数法

1 给定坐标 x0 ∈ Rn, 乘子 λ0, 罚因子 σ0 > 0, 约束违反度常数 ε > 0, 精度
ηk > 0, 迭代步 k = 0
2 for k = 0, 1, 2, · · · do
3 以 xk 为初始点, 求解 minx Lσk

(x, λk) 得到满足需求的精度条件
∥∇xLσk

(x, λk)∥ ⩽ ηk 的解 xk+1

4 if ∥c(xk+1)∥ ⩽ ε then
5 返回近似解 (xk+1, λk), 终止迭代
6 end if
7 更新乘子 λk+1 = λk + σkc(xk+1)
8 更新罚因子 σk+1 = ρσk

9 end for
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ρ 与 σk 的取值指导

增广拉格朗日函数

Lσ(x, λ) = f(x) +
∑
i∈E

λici(x) + 1
2
σ

∑
i∈E

c2
i (x)

σk 不应增长过快

随着 σk 的增大, Lσk
(x, λk) 海瑟矩阵的条件数也将增大, 导致数值困难

σk 与 σk+1 接近时, xk 可以作为求解 xk+1 的初始点, 以加快收敛

σk 不应增长过慢

算法整体的收敛速度将变慢

一个经验的取法 ρ ∈ [2, 10]
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例

考虑优化问题
min x+

√
3y

s.t. x2 + y2 = 1

增广拉格朗日函数（右图）

Lσ(x, y, λ) = x+
√

3y + λ(x2 + y2 − 1) + σ

2
(x2 + y2 − 1)2
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收敛性分析

定理 假设乘子列 {λk} 是有界的, 罚因子 σk → +∞, k →∞, 增广拉格朗日
方法中精度 ηk → 0, 迭代点列 {xk} 的一个子序列 {xkj+1} 收敛到 x∗ , 并且
在点 x∗ 处 LICQ 成立．那么存在 λ∗, 满足

λkj+1 → λ∗, j →∞

∇f(x∗) +∇c(x∗)λ∗ = 0, c(x∗) = 0

证明 对于增广拉格朗日函数 Lσk
(x, λk), 有

∇xLσk
(xk+1, λk) = ∇f(xk+1) +∇c(xk+1)(λk + σkc(xk+1))

= ∇f(xk+1) +∇c(xk+1)λk+1

= ∇xL(xk+1, λk+1)
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收敛性分析

由于点 x∗ 处 LICQ 成立, 故 rank(∇c(xkj+1)) = |E|, 从而成立

λkj+1 = (∇c(xkj+1)⊤∇c(xkj+1))−1∇c(xkj+1)⊤(∇xLσk
(xkj+1, λkj )−∇f(xkj+1))

因为 ∥∇xLσk
(xkj+1, λkj )∥ ⩽ ηkj

→ 0, 有

λkj+1 → λ∗ def= −(∇c(x∗)⊤∇c(x∗))−1∇c(x∗)⊤∇f(x∗)
∇xL(x∗, λ∗) = 0

而乘子列 {λk} 是有界的, 且 λkj + σkj
c(xkj+1)→ λ∗, 故 {σkj

c(xkj+1)} 有界.
又 σk → +∞, 则 c(x∗) = 0
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收敛性分析（更弱的假设）

定理 假设 x∗, λ∗ 分别是等式约束优化问题的严格局部极小解和相应的乘子,
则存在充分大的常数 σ̄ > 0 和充分小的常数 δ > 0, 如果对某个 k, 有

1
σk

∥λk − λ∗∥ < δ, σk ⩾ σ̄

则
λk → λ∗, xk → x∗

同时, 如果
lim sup σk < +∞ 且 λk ̸= λ∗, ∀k, 则 {λk} 收敛的速度是 Q-线性
lim sup σk = +∞ 且 λk ̸= λ∗,∀k, 则 {λk} 收敛的速度是 Q-超线性
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一般约束问题的增广拉格朗日函数法

一般约束优化问题
min f(x)
s.t. ci(x) = 0, i ∈ E

ci(x) ⩽ 0, i ∈ I

引入松弛变量, 得到如下等价形式

min
x,s

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) + si = 0, i ∈ I
si ⩾ 0, i ∈ I
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构造增广拉格朗日函数

构造拉格朗日函数

Lσ(x, s, λ, µ) =f(x) +
∑
i∈E

λici(x) +
∑
i∈I

µi(ci(x) + si) + σ

2
p(x, s)

si ⩾ 0, i ∈ I

其中
p(x, s) =

∑
i∈E

c2
i (x) +

∑
i∈I

(ci(x) + si)2

投影梯度法

消元法
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凸优化问题的增广拉格朗日函数法

考虑凸优化问题
min
x∈Rn

f(x)

s.t. ci(x) ⩽ 0, i = 1, 2, · · · ,m

增广拉格朗日函数

Lσ(x, λ) = f(x) + σ

2

m∑
i=1

(max{λi

σ
+ ci(x), 0}2 − λ2

i

σ2 )

给定一列单调递增的乘子 σk ↑ σ∞ 和初始乘子 λ0, 增广拉格朗日函数法为 xk+1 ≈ arg min
x∈Rn

Lσk
(x, λk)

λk+1 = max{0, λk + σkc(xk+1)}

32 / 40



不精确条件

为保证收敛性, ϕk(x) = Lσk
(x, λk) 的近似解至少满足不精确条件. 例如

ϕk(xk+1)− inf ϕk ⩽ ε2
k

2σk

, εk ⩾ 0,
∞∑

k=1
εk < +∞

由于 inf ϕk 是未知的, 直接验证不可行. 假设 ϕk 是 α-强凸函数, 存在

ϕk(x)− inf ϕk ⩽ 1
2α

dist2(0, ∂ϕk(x))

构造如下数值可验证的不精确条件

dist(0, ∂ϕk(xk+1)) ⩽
√
α

σk

εk, εk ⩾ 0,
∞∑

k=1
εk < +∞
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凸问题的增广拉格朗日函数法的收敛性

定理 假设{xk}, {λk} 为生成的序列, xk+1 满足不精确条件. 如果 Slater 约束
品性成立, 那么序列 {λk} 是有界序列且收敛到 λ∞ . 进一步, 如果存在一个
γ, 使得下水平集 {x ∈ X | f(x) ⩽ γ} 是非空有界的, 那么序列 {xk} 也是有
界的, 并且所有的聚点都是最优解

定理 假设乘子列 {λk} 是有界的, 罚因子 σk → +∞, k →∞, 增广拉格朗日方
法中精度 ηk → 0, 迭代点列 {xk} 的一个子序列 {xkj+1} 收敛到 x∗ , 并且在点
x∗ 处 LICQ 成立．那么存在 λ∗, 满足

λkj+1 → λ∗, j →∞

∇f(x∗) +∇c(x∗)λ∗ = 0, c(x∗) = 0
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基追踪问题 (BP)

设 A ∈ Rm×n(m ⩽ n), b ∈ Rm, x ∈ Rn, 基追踪问题被描述为

min
x∈Rn

∥x∥1 s.t. Ax = b

考虑其对偶问题
min
y∈Rm

b⊤y s.t. ∥A⊤y∥∞ ⩽ 1

⇓
min

y∈Rm, s∈Rn
b⊤y s.t. A⊤y − s = 0, ∥s∥∞ ⩽ 1

对比原始问题和对偶问题的增广拉格朗日函数法
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原始问题的增广拉格朗日函数法

引入罚因子 σ 和乘子 λ, 原始问题的增广拉格朗日函数为

Lσ(x, λ) = ∥x∥1 + λ⊤(Ax− b) + σ

2
∥Ax− b∥2

2

固定 σ, 第 k 步迭代更新格式 xk+1 = arg min
x∈Rn

{∥x∥1 + σ
2∥Ax− b+ λk

σ
∥2

2}

λk+1 = λk + σ(Axk+1 − b)

假设 xk+1 为 Lσ(x, λk) 的一个全局极小解, 则

0 ∈ ∂∥xk+1∥1 + σA⊤(Axk+1 − b+ λk

σ
) ⇒ −A⊤λk+1 ∈ ∂∥xk+1∥1
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BP 问题的实例与解

考虑 b = Au, 其中 u ∈ R1024 服从正态分布, 稀疏度 r = 0.1 或 0.2
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对偶问题的增广拉格朗日函数法

考虑对偶问题

min
y∈Rm,s∈Rn

b⊤y s.t. A⊤y − s = 0, ∥s∥∞ ⩽ 1

引入拉格朗日乘子 λ 和罚因子 σ, 作增广拉格朗日函数

Lσ(y, s, λ) = b⊤y + λ⊤(A⊤y − s) + σ

2
∥A⊤y − s∥2

2, ∥s∥∞ ⩽ 1

增广拉格朗日函数法的迭代格式为
(yk+1, sk+1) = arg min

y,∥s∥∞⩽1
{b⊤y + σk

2
∥A⊤y − s+ λ

σk

∥2
2}

λk+1 = λk + σk(A⊤yk+1 − sk+1)
σk+1 = min{ρσk, σ̄}
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消元法求解子问题

关于 s 的极小化问题为

min
s

σ

2
∥A⊤y − s+ λ

σ
∥2

2 s.t. ∥s∥∞ ⩽ 1

问题的解为
s = P∥s∥∞⩽1(A⊤y + λ

σ
)

其中 P∥s∥∞⩽1(z) 为集合 {s | ∥s∥∞ ⩽ 1} 的投影算子, 即

P∥s∥∞⩽1(z) = max{min{z, 1}, −1}
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消元法求解子问题

将上述 s 的表达式代入的增广拉格朗日函数法的迭代格式, 得
(yk+1, sk+1) = arg min

y,∥s∥∞⩽1
{b⊤y + σk

2
∥A⊤y − s+ λ

σk

∥2
2}

λk+1 = λk + σk(A⊤yk+1 − sk+1)
σk+1 = min{ρσk, σ̄}

⇓
yk+1 = arg min

y
{b⊤y + σ

2∥ψ(A⊤y + λ
σ
)∥2

2}

λk+1 = σkψ(A⊤yk+1 + λk

σk
)

σk+1 = min{ρσk, σ̄}

其中 ψ(x) = sign(x) max{|x| − 1, 0}
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Q&A
Thank you!
感谢您的聆听和反馈


