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最优化问题解的存在性

考虑优化问题

min
x∈Rn

f(x)

s.t. x ∈ X

首先分析最优解的存在性

然后考虑如何求出其最优解

(Weierstrass 定理) 紧集上的连续函数一定存在最大 (最小) 值

而在许多实际问题中, 定义域可能不是紧的, 目标函数也不一定连续
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推广的 Weierstrass 定理

若函数 f : X → (−∞,+∞] 适当且闭, 且以下条件中任意一个成立
dom f = {x ∈ X : f(x) < +∞} 是有界的
存在一个常数 γ̄ 使得下水平集

Cγ̄ = {x ∈ X | f(x) ≤ γ̄}

是非空且有界的

f 是强制的, 即对于任一满足 ∥xk∥ → +∞ 的点列 {xk} ⊂ X , 都有

lim
k→∞

f(xk) = +∞

则函数 f 的最小值点集 {x ∈ X | f(x) ≤ f(y), ∀y ∈ X } 非空且紧

三个条件在本质上都是保证 f(x) 的最小值不能在无穷远处取到
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例

当定义域不是有界闭集时, 对于强制函数

f(x) = x2, x ∈ X = R

其全局最优解一定存在

对于适当且闭的函数
f(x) = e−x, x ∈ X = R

不满足三个条件中任意一个, 因此不能断言其全局极小值点存在
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无约束可微问题的最优性理论

无约束可微优化问题通常表示为

min
x∈Rn

f(x) (1)

对于可微函数 f 和点 x ∈ Rn, 如果存在向量 d 满足

∇f(x)⊤d < 0

那么称 d 为 f 在点 x 处的一个下降方向

一阶最优性条件是利用梯度 (一阶) 信息来判断给定点的最优性

在局部最优点处不能有下降方向
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一阶必要条件

假设 f 在全空间 Rn 可微. 如果 x∗ 是 (1) 的一个局部极小点, 那么

∇f(x∗) = 0

证明 任取 v ∈ Rn, 考虑 f 在点 x = x∗ 处的泰勒展开

f(x∗ + tv) − f(x∗)
t

= v⊤∇f(x∗) + o(1)

根据 x∗ 的最优性, 分别对 t 取点 0 处的左、右极限可知

lim
t→0+

f(x∗ + tv) − f(x∗)
t

= v⊤∇f(x∗) ≥ 0

lim
t→0−

f(x∗ + tv) − f(x∗)
t

= v⊤∇f(x∗) ≤ 0

称满足 ∇f(x) = 0 的点 x 为 f 的稳定点 (或驻点、临界点)
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二阶最优性条件

对于 f(x) = x3, 满足 f ′(x) = 0 的点为 x∗ = 0, 但其不是局部最优解

假设 f 在点 x 的一个开邻域内是二阶连续可微的, 考虑

f(x+ d) = f(x) + ∇f(x)⊤d+ 1
2
d⊤∇2f(x)d+ o(∥d∥2)

则以下最优性条件成立

(二阶必要条件) 若 x∗ 是 f 的一个局部极小点, 则
∇f(x∗) = 0,∇2f(x∗) ⪰ 0

(二阶充分条件) 若满足
∇f(x∗) = 0,∇2f(x∗) ≻ 0

则 x∗ 是 f 的一个局部极小点
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证明

必要性 若 ∇2f(x∗) 有负的特征值 λ− < 0, 设 ∇2f(x∗)d = λ−d, 则

f(x∗ + d) − f(x∗)
∥d∥2 = 1

2
d⊤

∥d∥
∇2f(x∗) d

∥d∥
+ o(1) = 1

2
λ− + o(1)

当 ∥d∥ 充分小时, f(x∗ + d) < f(x∗), 这和点 x∗ 的最优性矛盾

充分性 由 ∇f(x∗) = 0 时的二阶展开

f(x∗ + d) − f(x∗)
∥d∥2 = d⊤∇2f(x∗)d+ o(∥d∥2)

∥d∥2 ≥ 1
2
λmin + o(1)

当 ∥d∥ 充分小时有 f(x∗ + d) ≥ f(x∗), 即二阶充分条件成立
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例: 实数情形的相位恢复

考虑

min
x∈Rn

f(x) =
m∑

i=1
r2

i (x)

其中 ri(x) = (a⊤
i x)2 − b2

i , i = 1, 2, · · · ,m

计算梯度和海瑟矩阵

∇f(x) = 2
m∑

i=1
ri(x)∇ri(x) = 4

m∑
i=1

((a⊤
i x)2 − b2

i )(a⊤
i x)ai

∇2f(x) =
m∑

i=1
(12(a⊤

i x)2 − 4b2
i )aia

⊤
i
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无约束不可微问题的最优性理论

考虑不可微优化问题
min
x∈Rn

f(x) (2)

假设 f 是适当且凸的函数, 则 x∗ 为 (2) 的全局极小点当且仅当 0 ∈ ∂f(x∗)

必要性 因 x∗ 为全局极小点, 有

f(y) ≥ f(x∗) = f(x∗) + 0⊤(y − x∗), ∀y ∈ Rn

=⇒ 0 ∈ ∂f(x∗)
充分性 如果 0 ∈ ∂f(x∗) , 那么根据次梯度的定义

f(y) ≥ f(x∗) + 0⊤(y − x∗) = f(x∗), ∀y ∈ Rn

=⇒ x∗ 为一个全局极小点
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复合优化问题的一阶必要条件

考虑一般复合优化问题

min
x∈Rn

ψ(x) = f(x) + h(x) (3)

其中 f 为光滑函数 (可能非凸), h 为凸函数 (可能非光滑)

定理 令 x∗ 为复合优化问题 (3) 的一个局部极小点, 那么

−∇f(x∗) ∈ ∂h(x∗)

由于目标函数可能是整体非凸的, 因此一般没有一阶充分条件
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例: ℓ1 范数优化问题

考虑
min
x∈Rn

ψ(x) = f(x) + µ∥x∥1

∥x∥1 不是可微的, 但可以计算其次微分

∂i∥x∥1 =


{1}, xi > 0
[−1, 1], xi = 0
{−1}, xi < 0

若 x∗ 是局部最优解, 则 −∇f(x∗) ∈ µ∂∥x∗∥1, 即

∇if(x∗) =


−µ, x∗

i > 0
a ∈ [−µ, µ], x∗

i = 0
µ, x∗

i < 0
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总结

无约束优化问题及其最优性条件

问题 一阶条件 二阶条件
可微问题 ∇f(x∗) = 0 (必要) 必要/充分
凸问题 0 ∈ ∂f(x∗) (充要) –

复合优化问题 −∇f(x∗) ∈ ∂h(x∗) (必要) –
非凸非光滑 0 ∈ ∂f(x∗) (必要) –
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对偶理论

一般的约束优化问题
min
x∈Rn

f(x)

s.t. ci(x) ≤ 0, i ∈ I
ci(x) = 0, i ∈ E

可行域定义为

X = {x ∈ Rn | ci(x) ≤ 0, i ∈ I 且 ci(x) = 0, i ∈ E}

通过将 X 的示性函数加到目标函数中可以得到无约束优化问题, 但是转化后
问题的目标函数是不连续的、不可微的以及不是有限的
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拉格朗日函数

拉格朗日函数 L : Rn × Rm
+ × Rp → R

L(x, λ, ν) = f(x) +
∑
i∈I

λici(x) +
∑
i∈E

νici(x)

λi 为第 i 个不等式约束对应的拉格朗日乘子

νi 为第 i 个等式约束对应的拉格朗日乘子

拉格朗日对偶函数 g : Rm
+ × Rp → [−∞,+∞)

g(λ, ν) = inf
x∈Rn

L(x, λ, ν)

= inf
x∈Rn

(f(x) +
∑
i∈I

λici(x) +
∑
i∈E

νici(x))
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拉格朗日对偶问题

拉格朗日对偶问题

max
λ≥0,ν

g(λ, ν) = max
λ≥0,ν

inf
x∈Rn

L(x, λ, ν)

设 p∗ 是原始问题的最优解, q∗ 是对偶问题的最优解

弱对偶性 q∗ ≤ p∗

对凸问题与非凸问题都成立

可导出复杂问题的非平凡下界

强对偶性 q∗ = p∗

(通常) 对凸问题成立
称保证凸问题强对偶性成立的条件为约束品性
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例: 线性规划问题的对偶

考虑线性规划问题
min

x
c⊤x

s.t. Ax = b

x ≥ 0

拉格朗日函数

L(x, s, ν) = c⊤x+ ν⊤(Ax− b) − s⊤x = −b⊤ν + (A⊤ν − s+ c)⊤x

对偶函数

g(s, ν) = inf
x
L(x, s, ν) =

−b⊤ν, A⊤ν − s+ c = 0
−∞, 其他
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例: 线性规划问题的对偶

对偶问题

max
s,ν

− b⊤ν

s.t. A⊤ν − s+ c = 0
s ≥ 0

y=−ν⇔
max

s,y
b⊤y

s.t. A⊤y + s = c

s ≥ 0

若保留约束 x ≥ 0, 则拉格朗日函数为

L(x, y) = c⊤x− y⊤(Ax− b) = b⊤y + (c− A⊤y)⊤x

对偶问题需要将 x ≥ 0 添加到约束里

max
y

{inf
x
b⊤y + (c− A⊤y)⊤x s.t. x ≥ 0} ⇒

max
y

b⊤y

s.t. A⊤y ≤ c
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例: 线性规划问题的对偶

将 max b⊤y 改写为 min −b⊤y, 对偶问题的拉格朗日函数为
L(y, x) = −b⊤y + x⊤(A⊤y − c) = −c⊤x+ (Ax− b)⊤y

得到对偶函数

g(x) = inf
y
L(y, x) =

−c⊤x, Ax = b

−∞, 其他

相应的对偶问题是

max
x

− c⊤x

s.t. Ax = b

x ≥ 0

该问题与原始问题完全等价, 表明线性规划问题与其对偶问题互为对偶
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例: ℓ1 正则化问题的对偶

考虑
min
x∈Rn

1
2

∥Ax− b∥2 + µ∥x∥1

令 r = Ax− b, 问题等价于

min
x,r

1
2

∥r∥2 + µ∥x∥1

s.t. r = Ax− b

拉格朗日函数

L(x, r, λ) = 1
2

∥r∥2 + µ∥x∥1 − ⟨λ,Ax− b− r⟩

= 1
2

∥r∥2 + λ⊤r + µ∥x∥1 − (A⊤λ)⊤x+ b⊤λ
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例: ℓ1 正则化问题的对偶

对偶函数

g(λ) = inf
x,r

L(x, r, λ) =

b⊤λ− 1
2∥λ∥2, ∥A⊤λ∥∞ ≤ µ

−∞, 其他

对偶问题

max
λ

b⊤λ− 1
2

∥λ∥2

s.t. ∥A⊤λ∥∞ ≤ µ

24 / 41



例: 半定规划问题的对偶问题

考虑
min

X∈Sn
⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi, i = 1, 2, · · · ,m
X ⪰ 0

拉格朗日函数

L(X, y, S) = ⟨C,X⟩ −
m∑

i=1
yi(⟨Ai, X⟩ − bi) − ⟨S,X⟩, S ⪰ 0
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例: 半定规划对偶问题的对偶问题

对偶函数

g(y, S) = inf
X

L(X, y, S) =

b
⊤y,

m∑
i=1

yiAi − C + S = 0

−∞, 其他

对偶问题
min
y∈Rm

− b⊤y

s.t.
m∑

i=1
yiAi − C + S = 0

S ⪰ 0

26 / 41



目录

2.1 最优化问题解的存在性

2.2 无约束可微问题的最优性理论

2.3 无约束不可微问题的最优性理论

2.4 对偶理论

2.5 一般约束优化问题的最优性理论

2.6 带约束凸优化问题的最优性理论

27 / 41



切锥

给定可行域 X 及 x ∈ X , 若存在序列 {zk}∞
k=1 ⊂ X , limk→∞ zk = x 以及正标

量序列 {tk}∞
k=1, tk → 0 满足

lim
k→∞

zk − x

tk
= d

则称向量 d 为 X 在点 x 处的一个切向量

所有点 x 处的切向量构成的集合称为切锥, 用 TX (x) 表示
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几何最优性条件

一般优化问题
min
x∈Rn

f(x)

s.t. ci(x) ≤ 0, i ∈ I
ci(x) = 0, i ∈ E

(4)

定理 假设可行点 x∗ 是问题 (4) 的一个局部极小点. 如果 f(x) 和
ci(x), i ∈ I ∪ E 在点 x∗ 处是可微的, 那么

d⊤∇f(x∗) ≥ 0, ∀d ∈ TX (x∗)

等价于
TX (x∗) ∩ {d | ∇f(x∗)⊤d < 0} = ∅
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线性化可行锥

定义 对于可行点 x ∈ X , 定义积极集 A(x) = E ∪ {i ∈ I | ci(x) = 0}, 点 x 处
的线性化可行方向锥定义为

F(x) =

d
∣∣∣∣∣∣ d

⊤∇ci(x) = 0, ∀ i ∈ E
d⊤∇ci(x) ≤ 0, ∀ i ∈ A(x) ∩ I


命题 设 ci(x), i ∈ E ∪ I 一阶连续可微, 则对任意可行点 x 有

TX (x) ⊆ F(x)

线性可行化方向锥容易计算, 但不能反映可行域 X 的本质特征

切锥能反映可行域 X 的本质特征, 但不容易计算

引入约束品性, 确保 TX (x∗) = F(x∗), 从而用 F(x) 取代 TX (x)
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KKT 条件

定理 假设 x∗ 是一般优化问题 (4) 的一个局部最优点
min
x∈Rn

f(x)

s.t. ci(x) ≤ 0, i ∈ I
ci(x) = 0, i ∈ E

如果 TX (x∗) = F(x∗) 成立, 那么存在拉格朗日乘子 λ∗
i 使得

稳定性条件 ∇xL(x∗, λ∗) = ∇f(x∗) +
∑

i∈I∪E
λ∗

i ∇ci(x∗) = 0

原始可行性条件 ci(x∗) = 0, ∀i ∈ E
原始可行性条件 ci(x∗) ≤ 0, ∀i ∈ I
对偶可行性条件 λ∗

i ≥ 0, ∀i ∈ I
互补松弛条件 λ∗

i ci(x∗) = 0, ∀i ∈ I
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临界锥

若 x∗ 是满足 KKT 条件的点, 假设 TX (x∗) = F(x∗), 则 ∀d ∈ F(x∗) 有

d⊤∇f(x∗) = −
∑
i∈E

λ∗
i d

⊤∇ci(x∗)︸ ︷︷ ︸
= 0

−
∑

i∈A(x∗)∩I
λ∗

i d
⊤∇ci(x∗)︸ ︷︷ ︸

≤ 0

≥ 0

定义 设 (x∗, λ∗) 是满足 KKT 条件的 KKT 对, 定义临界锥为

C(x∗, λ∗) = {d ∈ F(x∗) | d⊤∇ci(x∗) = 0, ∀i ∈ A(x∗) ∩ I 且 λ∗
i > 0}

当 d ∈ C(x∗, λ∗) 时, ∀i ∈ E ∪ I 有 λ∗
i ∇ci(x∗)⊤d = 0, 故

d⊤∇f(x∗) =
∑

i∈E∪I
λ∗

i d
⊤∇ci(x∗) = 0
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二阶最优性条件

定理 (二阶必要条件) 假设 x∗ 是一个局部最优解, 且 TX (x∗) = F(x∗). 令
λ∗ 为相应的拉格朗日乘子, 即 (x∗, λ∗) 满足 KKT 条件, 那么

d⊤∇2
xxL(x∗, λ∗)d ≥ 0, ∀d ∈ C(x∗, λ∗)

定理 (二阶充分条件) 假设在可行点 x∗ 处, 存在一个拉格朗日乘子 λ∗, 使得
(x∗, λ∗) 满足 KKT 条件. 如果

d⊤∇2
xxL(x∗, λ∗)d > 0, ∀d ∈ C(x∗, λ∗), d ̸= 0

那么 x∗ 为一个严格局部极小解

回顾无约束优化问题的二阶最优性条件
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例

考虑

min x2
1 + x2

2 s.t. x2
1

4
+ x2

2 − 1 = 0

拉格朗日函数为

L(x, λ) = x2
1 + x2

2 + λ(x
2
1

4
+ x2

2 − 1)

该问题可行域在任意一点 x = (x1, x2)⊤ 处的线性化可行方向锥为

F(x) = {(d1, d2) | x1

4
d1 + x2d2 = 0}

根据 C(x, λ) = F(x), 计算出 4 个 KKT 对

(x⊤, λ) = (2, 0,−4), (−2, 0,−4), (0, 1,−1), (0,−1,−1)
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例

第一个 KKT 对 y = (2, 0,−4), 计算可得

∇2
xxL(y) =

[
0 0
0 −6

]
, C(y) = {(d1, d2) | d1 = 0}

取 d = (0, 1), 则 d⊤∇2
xxL(y)d = −6 < 0, 因此 y 不是局部最优点

第三个 KKT 对 z = (0, 1,−1), 计算可得

∇2
xxL(z) =

[
3
2 0
0 0

]
, C(z) = {(d1, d2) | d2 = 0}

对于任意的 d = (d1, 0) 且 d1 ̸= 0, 有 d⊤∇2
xxL(z)d = 3

2d
2
1 > 0, 因此 z 是一个

严格局部最优点
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带约束凸优化问题

考虑带约束的凸优化问题

min
x∈D

f(x)

s.t. ci(x) ⩽ 0, i = 1, 2, · · · ,m
Ax = b

(5)

f(x) 为适当的凸函数
ci(x) 是凸函数且 dom ci = Rn

集合 D 表示自变量 x 的定义域, 即 D = {x | f(x) < +∞}
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Slater 约束品性与强对偶原理

定义 集合 D 的相对内点集定义为

relint D = {x ∈ D | ∃ r > 0, 使得 B(x, r) ∩ affine D ⊆ D}

定义 若对凸优化问题 (5) 存在 x ∈ relint D 满足

ci(x) < 0, i = 1, 2, · · · ,m, Ax = b

则称满足 Slater 约束条件

定理 若凸优化问题满足 Slater 条件, 则强对偶原理成立
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一阶充要条件

定理 对于凸优化问题 (5), 如果 Slater 条件成立, 那么 x∗, λ∗ 分别是原始、对
偶全局最优解当且仅当

稳定性条件 0 ∈ ∂f(x∗) +
∑
i∈I

λ∗
i∂ci(x∗) +

∑
i∈E

λ∗
i ai

原始可行性条件 Ax∗ = b, ∀i ∈ E
原始可行性条件 ci(x∗) ≤ 0, ∀i ∈ I
对偶可行性条件 λ∗

i ≥ 0, ∀i ∈ I
互补松弛条件 λ∗

i ci(x∗) = 0, ∀i ∈ I
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例: 仿射空间的投影问题

考虑

min
x∈Rn

1
2

∥x− y∥2
2 s.t. Ax = b

拉格朗日函数 L(x, λ) = 1
2∥x− y∥2 + λ⊤(Ax− b)

KKT 条件 {
x∗ − y + A⊤λ∗ = 0

Ax∗ = b

第一式左右两边同时左乘 A 可得

Ax∗ − Ay + AA⊤λ = 0 ⇒ λ∗ = (AA⊤)−1(Ay − b)
将 λ∗ 代回第一式可知

x∗ = y − A⊤(AA⊤)−1(Ay − b)
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总结

无约束优化问题及其最优性条件

问题 一阶条件 二阶条件
可微问题 ∇f(x∗) = 0 (必要) 必要/充分
凸问题 0 ∈ ∂f(x∗) (充要) –

复合优化问题 −∇f(x∗) ∈ ∂h(x∗) (必要) –
非凸非光滑 0 ∈ ∂f(x∗) (必要) –

约束优化问题的最优性条件和相应约束品性

问题 一阶条件 二阶条件 约束品性
一般问题 KKT 条件 (必要) 必要/充分 LICQ
凸问题 KKT 条件 (充要) – Slater
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Q&A
Thank you!
感谢您的聆听和反馈


