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BR AR

n [EEG x € RY, FEHFIER

min - f(x) +79(x)

f(x) BEEIEM, g(x) B EMNIRN
v >0 RIENLSH

5N x=y, 5F

m T HMREAEH R A
1
Lo(x,y,u)=f(y) +7v9(x)+u (x—y)+ Slx— yl?
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BR AR

n ¥ ol=ay, XKEFEERFEE

) 1
X1 = argmin {0%g(x) + 5 Ix — (" — u*)’}

) 1
y**! = argmin {af(y) + 5 lly — (o +u¥)|*}

k41 k+1 k41

u y

= 11k + X
n BEEKA

Xk+1 — pl"OXazg(yk — uk) = @{%%nﬁ]é
v = prox,  (x" +ub) = LAIIIEG R R

utth = ub 4 XM i
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m QANERE g(x)

~1970
1975-1985
1980-1985

1980-1990
1990-2000

1992-2005

1987-2005
2005-2009
1993-2005
2000-2010
2002-2012
2010-2017

Energy regularization
Spatial smoothness
Optimally learned transform

Weighted smoothness
Robust statistics

TV

Other PDE-based options
Field-of-experts

Wavelet sparsity
Self-similarity

Sparsity methods
Low-rank assumption

e 2 2
ILxZ or [|Dux3 + [ Drx3
ITx|3 =x"R™'x

where T/R is learned via PCA
ILx|y

17 p{Lx}

e.g., Hubber-Markov

fUEQ |Vx(v)|dv

or 17/ID,x[2 + Dy x[2
fvng [YX(’U), V*x(v)] dv
> Akl pe{Lex}

W[

2ok Zjesz(k) d{Rex, R;x}
lla|lo s.t. x = Da

>k 1 Xawm [«
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BR AR

m £ % (Total Variation, TV) EXBEFHE
1
min §HX — yII? + Allx[|rv

:H:q:l ||X||TV = E |(VX)Z , E.I-HE

Vi = %02+ (K — %) B X — X+ [Xign — X,
m /NEFEB (Wavelet Sparsity) KM E

1
min o flx - yl? + MWl

1
min - gflx - yl? + 1A © Wl
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BR AR

n BRTESREFITE

T T T
MVCNN SwinlR
295 NLRN - FocNet GCJ:)N/ —0
N3Net 88— — DRUNet
DnCNN o /:/ “RIDNet
_IRONN® o
29 MLP - |
_VVNNT °
SURELET | o0 EPLL I ° TNRD
o ° ° e — °
=z BM3D - CSF
n ° 5
o 285 — = -
KSVD — — —
- ®
28 - -
FoE
°
275 | | | | | | | 1
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REMEIE

m BEEF A AR AR KR RS
RE + HiE, MEE
HEREA B, TiEETiRE iRk
m Plug-and-Play Priors for Model Based Reconstruction, 2013

m https://github.com/svvenkatakrishnan/plug-and-play-priors

a5
35

ol - Buiad Algorithm RMSE | A
s B K-SVD [4] 2.13 | 4.32
w20 M BM3D [5] 2.46 1.39
i PLOW [7] 235 | 1.50
§ TV [21] 355 | 0.47
q-GGMRF [22] 458 | 0.28

Discrete Recon [23] 1.20 1.00
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https://github.com/svvenkatakrishnan/plug-and-play-priors

KT ITIE: FFDNet

m Toward a Fast and Flexible Solution for CNN-Based Image Denoising, 2018

m https://github.com/cszn/FFDNet

) 1 9
min o x =y + AB(x)

X

Conv + BN +RelU [E

2
°
2| | &
[
S P
4Pl
z| |+
S| | >
ol |2
S
o

a4
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https://github.com/cszn/FFDNet

=% PnP-SClI

m Plug-and-Play Algorithms for Video Snapshot Compressive Imaging, 2022

m https://github.com/liuyangl2/PnP-SCI

PnP-FFDNet

Performance of plug-and-play denoisers for SCI

- WNNM
0 WNNM-TV FastDVDnet
20.91dB, 0.7973 . N X
g QUWNNM-FFDNet
£
g 30 WNNM-VBM4D FFDNet
&; ] o
.T:;
92
VBM4D ©.
25.10dB, 0.7496 & 3 V i
[ 150 : 7 B ] e . H— N o
; < ] 102 107 10° 10! 02

Speed (1/runtime in min™')

p- e 4 O
22.68 dB, 0.7694 29.30dB, 0.9341 30.57 dB, 0.9489
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https://github.com/liuyang12/PnP-SCI

PnP-ADMM &%

m B#EEDA  (Plug-and-Play, PnP) #EZ2

X" = proxz,(y* —u") = x*'=H,(y"—u")

m PnP-ADMM &ERER

<k — Ha(ylc o uk)
yhHl = proxaf(ka i uk)

Rl gk okl gkl

u

m R PnP-ADMM AARFRIENK, MR (x*,u*) HE

x* = H,(x* —u")

X" = prox, ;(x* + u”)
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PnP-DRS &%

m PnP-Douglas—Rachford Splitting (DRS) K&

xk+1/2 — pI‘OXaf(Zk)

Xk+1 — HU(2Xk+1/2 o Zk)

AL = gk ekl k12

m T2 PnP-DRS HJIERAIURTA
2" = T(z")
1

1
T = §I+ 5(2H(, — I)(2prox,,; — I)

m PnP-DRS 5 PnP-ADMM Z{/}
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PnP-DRS Uz &ts

m Bi% E o THERNEE, H, B/ o BZEREER, TR IMRIEXT
FHREx,ycR, FHE > 0EF H,: RI - R HR
[(Hy — I)(x) — (Ho = D(y)|| < ellx =yl

n B RIE H, #ELERFZH B f 2 B0, AIREH, BAFHE
X,y € RY, T ¢ > 0 E5

1 1
T=-1+ 5(2[—[0 — I)(2prox,,; — I)

2
HE )
1+e+eap+2eapn
T(x)-T < -
760 =Ty < = o ey
B S <o, e< 1, W T BEWHEEF, B PnP-DRS HiEHEY
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PnP-ADMM U &5t

n FE RIE H, XF cc[0,1) BRBIESEH B f 2 p-BORH. BA
PnP-ADMM EiZ I REE

¢

(1+¢e—2)pu

m i EEE H, 2XEEE R 2RE, [ 2EETK
(I - H,)(y) =y — Hy(y) = R(y)
FRBRIEEZFHSEMTIRFEZRE R RS FHETEH

Plug-and-play methods provably converge with properly trained denoisers
E Ryu, J Liu, S Wang, X Chen... - ... on Machine Learning, 2019 - proceedings.mir.press
Abstract Plug-and-play (PnP) is a non-convex framework that integrates modern denoising
priors, such as BM3D or deep learning-based denoisers, into ADMM or other proximal

<«
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IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 74, 2025

5503014

Tensor Low-Rank Approximation via Plug-and-Play
Priors for Anomaly Detection
in Remote Sensing Images

, Xianchao Xiu
and Jianhua Zhang

Jingjing Liu™, Manlong Feng

Abstract— Optical remote sensing images (RSIs) have received
widespread attention in fields such as agricultural monitoring,
mineral exploration, and military defe H , the detecti
performance will be seriously degraded when interfered with by
noise. To overcome this issue, we first present a novel method
called tensor low-rank approximation (TLRA), which leverages
the weighted tensor nuclear norm (WTNN) to exploit the spectral
overall structure, introduces a new tensor sparse l,

b 4B Vil W B B e

, Member, IEEE, Xiaoyang Zeng™, Senior Member, IEEE,
, Senior Member, IEEE

1. INTRODUCTION

NOMALY detection is a prominent field of study in the
realm of optical remote sensing images (RSIs) [1], [2],
[3], widely used in environmental monitoring [4], agricultural
management [5], military reconnaissance [6], and other sce-
narios. The target of anomaly detection is to detect abnormal,
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T

n RERETE

SR-LMM[43]
MCAEN[47]
CRD[17] BASO[29] PAB-DC[44] PTA[90]
KIFD[86] KNUD[34]
KRX[30] I I I
T l O T © T © © T © © T © o T
2003 2! Izm% 2019 2020 202 I 202
Transfer
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© Deep Learning Methods
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m Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection,

2023 |
min || 2wy + A€

st. X =AxZ+E&

' I

A Z :
=N
I : :

.. . _ Weighted Tensor
Dictionary Construction |= Nuclear Norm =+ | Ls: Sparse Norm
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BtEEGREERN

m W% ESKk EHHE?

TTERR

h v =z
1Eh=>_>_> €G3k = |€lo=14{G4.k)[|E(, ] k)| # 0}
i=1 j=1k=1
g AT
[€llr0 = 2{(&,5) [ I€(, ,:)]l2 # 0}
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m Plug-and-Play Tensor Low-Rank Approximation (PnP-TLRA)
min [|Z]lwran + All€]L

st. X =AxZ+E&

4
(TLRA)  min || Zlwrns + All€]lro + # N[

st. X=A*xZ+E+N

\
(PuP-TLRA)  min 6(2) + A[|€][ro + pllV][7

st. X=A*xZ+E+N
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HFEIR

Original HSI Data

X e RNXNxM
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MILEE

= PnP-ADMM &%
Lg(Z,E,N,Y) = 6(2) + MElpo + plIN 7
—(y,X—A*Z—S—N>+§||X—A*Z—5—N||%
m ERITRE
ZF = argming ¢(Z) + S||X — Ax Z - EF — NF - YF/p|2
EFL = argming A||E||F0 + g”)\f —AxZFL g Nk Yk/B|12

NFH = argming pllN[2 + 21X — Ax ZEH - g1 — PR/
yk+1 _ yk _ ﬂ(.)( —Ax Zk+1 _ 5k+1 _NkJrl)

T PnP-TLRA 12U &kY
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HESLIE

B GRXD: Hyperspectral Remote Sensing, 2012

m RPCA-RX: Low-Rank and Sparse Matrix Decomposition-Based Anomaly Detection for Hyperspectral
Imagery, 2019

m LSMAD: A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for
Hyperspectral Anomaly Detection, 2015

m GTVLRR: Graph and Total Variation Regularized Low-Rank Representation for Hyperspectral Anomaly
Detection, 2020

m GAED: Hyperspectral Anomaly Detection with Guided Autoencoder, 2022

m GNLTR: Generalized Nonconvex Low-Rank Tensor Representation for Hyperspectral Anomaly
Detection, 2023

m ELRSF-SP: Hyperspectral Anomaly Detection via Enhanced Low-Rank and Smoothness Fusion
Regularization Plus Saliency Prior, 2024

m TPCA: A Preprocessing Method for Hyperspectral Target Detection Based on Tensor Principal
Component Analysis, 2018

m PTA: Prior-Based Tensor Approximation for Anomaly Detection in Hyperspectral Imagery, 2022
m PCA-TLRSR: Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection, 2023
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HEsRw

m HHEE (a) San Diego (b) HYDICE (c) ABU-airport (d) ABU-beach (e)-(f) ABU-urban
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HESLIE

n FHUEIRIEFFERZ (Receiver Operating Characteristic, ROC)

1 1
PP TLRA
TLRA
08 08 JJJ
b
06 06 p—y
a a o paLRse]
2 £ INLT)
GAED
04 0.4 —s—pTA
o GRXD.
RPCA-RX.
—a— LSMAD
02 02 —+—1TPCA
o GTVLI
ELRSF-SP.
0
10 w? 10! 0° w0 107 107 10! 10°
FAR FAR
1 1
08 08
06 06
2 a
~ &
04 0.4
02 02
I ELRSF.SP © ELRSF-SP
0
1074 107 10! 10" 10 107 107! 10°
FAR
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#Esk

m BIZE TEFR (Area Under the Curve, AUC)

GRXD | RPCA-RX | LSMAD | GTVLRR | TPCA | PTA | PCA-TLRSR | GAED | GNLTR | ELRSF-SP | TLRA | PnP-TLRA
SD 0.8886 0.9165 0.9457 0.9648 | 0.8849 | 0.9868 0.9923 0.9889 | 0.9838 0.9878 0.9927 0.9942
HYDICE 0.9857 0.9842 0.9906 0.9918 | 0.8242 | 0.8396 0.9802 0.9639 | 0.9859 0.9768 0.9840 0.9968
ABU-airport-1 | 0.8221 0.8089 0.8341 0.8957 | 0.8023 | 0.7698 0.9291 0.8106 | 0.9293 0.8221 0.9331 0.9303
ABU-airport-2 | 0.8403 0.8431 0.9192 0.8911 | 0.8891 | 0.8995 0.9345 0.9272 | 0.9242 0.8891 0.9409 0.9523
ABU-airport-3 | 0.9288 0.9275 0.9398 0.9287 | 0.9297 | 0.7369 0.9233 0.8638 | 0.9330 0.9209 0.9379 0.9380
ABU-airport-4 | 0.9526 0.9627 0.9864 0.9776 | 0.9432 | 0.9890 0.9914 0.9654 | 0.9606 0.9876 0.9932 0.9918
ABU-beach-1 | 0.9804 0.9761 0.9778 0.9703 | 0.9860 | 0.9682 0.9831 0.9223 | 0.9638 0.9780 0.9868 0.9895
ABU-beach-2 | 0.9106 0.9097 0.9056 0.9348 | 0.8061 | 0.8862 0.9331 0.5061 | 0.9472 0.9097 0.9580 0.9533
ABU-beach-3 | 0.9998 | 0.9995 0.9996 0.9866 | 0.9982 | 0.9483 0.9994 0.9891 | 0.9928 0.9945 0.9994 0.9996
ABU-beach-4 | 0.9538 0.9599 0.9349 0.9803 | 0.9338 | 0.9000 0.9755 0.8514 | 0.9044 0.9698 0.9899 0.9902
ABU-urban-1 | 0.9907 0.9922 0.9818 0.8742 | 0.9390 | 0.8940 0.9923 0.9409 | 0.9325 0.9907 0.9934 0.9951
ABU-urban-2 | 0.9946 0.9957 0.9849 0.8628 | 0.9409 | 0.9701 0.9928 0.9958 | 0.9874 0.9946 0.9983 0.9994
ABU-urban-3 | 0.9513 0.9577 0.9633 0.9365 | 0.8224 | 0.9090 0.9832 0.9725 | 0.9667 0.9513 0.9888 0.9855
ABU-urban-4 | 0.9887 0.9871 0.9809 0.9205 | 0.9835 | 0.9937 0.9857 0.9556 | 0.9931 0.9909 0.9883 0.9950
ABU-urban-5 | 0.9690 0.9658 0.9610 0.9347 | 0.9370 | 0.8693 0.9811 0.9148 | 0.9297 0.9658 0.9821 0.9837
Average 0.9438 0.9458 0.9537 0.9367 | 0.9080 | 0.9040 0.9718 0.9046 | 0.9556 0.9553 0.9778 0.9796
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HESLIE

m San Diego #IEE LI
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HESLIE

m HYDICE #EELLER

(@) (b) (© (d) (€) U] (9)
(h) 0] () (k) 0] (m) (n)
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Background
Anomaly
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SBuEL InsHEIS 131 1ONINIA
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n BAREEEHRK

Lagrange function value

Lagrange function value
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HESLIE

n EBRRIRELAS

Datasets

BM3D DnCNN LeNet FFDNet
AUC Time | AUC Time | AUC Time | AUC  Time
San Diego | 0.9911 17.74 | 0.9896 15.65 | 0.9902 17.72 | 0.9942 13.21
HYDICE 0.9946 21.02 | 0.9883 22.15|0.9915 16.63 | 0.9968 15.43
ABU-airport-2 | 0.9436 13.93 | 0.9407 11.98 | 0.9344 12.48 | 0.9523 8.69
ABU-beach-2 | 0.9491 17.66 | 0.9501 19.58 | 0.9472 15.4 | 0.9533 12.68
ABU-urban-2 | 0.9955 14.84 | 0.9951 12.43 | 0.9986 13.95| 0.9994 10.21

m iE1THTE L ES
[ Datasets | TPCA | PTA | PCA-TLRSR | TLRA [ PnP-TLRA |

San Diego | 34.66 | 26.37 10.99 5.89 10.63
HYDICE 25.39 | 22.76 9.31 4.89 24.49
ABU-airport | 41.63 | 29.21 11.32 6.12 9.71
ABU-beach | 29.04 | 38.24 15.61 10.86 12.31
ABU-urban | 36.95 | 28.01 17.35 8.38 11.82
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a WITEIEER S
Tuning-Free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems, 2020
u WABE S
Enhanced Convergent PnP Algorithms for Image Restoration, 2021
Wasserstein-based Projections with Applications to Inverse Problems, 2022
m LRI
Image Denoising: The Deep Learning Revolution and Beyond, 2023
Learned Reconstruction Methods With Convergence Guarantees, 2023

Plug-and-Play Methods for Integrating Physical and Learned Models in Computational
Imaging, 2023

Learning to Optimize: A Tutorial for Continuous and Mixed-Integer Optimization, 2024
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m 6.1 BIHRENA K%

m 62 RERFMGE
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w [EARREFIEE KRR T AL 538
1
min o @2 — yl3 + Xwa]l ™)

BRI HERE (lterative Soft Thresholding Algorithm, ISTA)

De-noising by soft-thresholding
DL Donoho - IEEE transactions on information theory, 2002 - ieeexplore.ieee.org

.. We propose here a formal interpretation of the term “denoising” and show how wavelet
transforms may be used to optimally “de-noise” in this interpretation. Moreover, this “denoising”

Y 1R7Z U9 3|F WSIFEAEL: 15994 HEENE A 12 MHEdE 9
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ISTA

n HBED
rk) = pk=1) p(IDT(CDx(k_I) —y)

. lEEEES 1
z® = arg min §Hx — W3 + AWz,

\
.IT(k) = PI‘OX)\(]_s(?“(k))
= sign(r®) - max(]r®|X, 0)
n WEURE LS
n HRERAEE LEURTESHIEE
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LISTA

n RERFMEZ (Deep Unfolding Networks, DUNs)
m LISTA #§ ISTA MIB—SERERAREMEN—F
P8 Z 1) T (1) _ )

U
x(k-i—l) _ he(ZL'(k_l) . pq)T(CDI’(k_l) _ y))

Learning fast approximations of sparse coding
K Gregor, Y LeCun
Proceedings of the 27th international conference on international conference ..., 2010 - dl.acm.org

In Sparse Coding (SC), input vectors are reconstructed using a sparse linear combination
of basis vectors. SC has become a popular method for extracting features from data. For
a given input, SC minimizes a quadratic reconstruction error with an L4 penalty term on
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ISTA-Net

m ISTA-Net = LISTA + CNN
1
min 2 ||®x — |3 + AW,

N8
1
min =z — y|3 + A|F(@)]

ISTA-Net: Interpretable optimization-inspired deep network for image
compressive sensing

J Zhang, B Ghanem - ... of the IEEE conference on computer ..., 2018 - openaccess.thecvf.com

... el structured deep network, dubbed ISTA-Net, which is inspired ... All the parameters in ISTA-Net
(eg. nonlinear transforms, ... version of ISTA-Net in the residual domain, dubbed ISTA-Net+, ...

Yr R7F YUY 5IA WSIRMKEK: 1555 #E¥E FRE 11 MhRE 99
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Pattern Recognition 172 (2026) 112496

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

STAR-Net: an interpretable model-aided network for remote sensing image
denoising
Jingjing Liu®, Jiashun Jin?, Xianchao Xiu (2%, Jianhua Zhang?®, Wanquan Liu (2¢

#School of Micraelectronics, Shanghai Collaborative I ion Center for Intelligent Sensing Chip Technology, Shanghai University, Shanghai, 200444, China
b State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 201203, China

© School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China

4 School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen, 510275, China
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n AT AEFEELIEERR

1. Incoming light

_—-=—C 5. Signal transmission
N

General hyperspectral

Each point of a hyperspectral
image is associated with a
)| vector called a “spectrum®.

 BEES: KR AE FERDN, M, BE

m https://github.com/xianchaoxiu/Hyperspectral-Imaging
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https://github.com/xianchaoxiu/Hyperspectral-Imaging

i

n SREEGER/ SAEEGRE

Spectal Bunds
Spatial Feature: Spectral Feature:
Before/After Denoising Before/After Denoising

m EFEE £ E KHEE, JRH%RT
n HAEWE): SRMEME, BEMYE, TEEME
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m Google Scholar FFXF “tensor hyperspectral” BI%Eit

I Full-text” Searches 30700 o1
"I Allintitle” Searches

347

15700

10300

6630
L 4490
2230 3220 . 51
10

2006 2009 2012 2015 2018 2021 2024

« HBHBEET, SHNKESE RROHTESRE

39/56



n FEERERRHESR

1
(P) min 5\!3’ — G x5 A2 4+ G
st. ATA =1

Liu-Li-Wang-Tao-Du-Chanussot, SCIS, 2023
Wang-Hong-Han-Li-Yao-Gao, IEEE GRSM, 2023
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m Xiong-Zhou-Tao-Lu-Zhou-Qian, IEEE TIP, 2022

min LY~ x5 AlR + XX (606, B) + 3 l1B]L)
st. ATA=1 Z
» SHREFT
#(G,B;) = ;HRZQ — B; x1 Dy x2 Dy x3 D3|}
n MR ESLRIES?

n MAHZIRIEFIE?
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n HERIKE BT R (Sparse tensor aided representation, STAR)
. 1
(STAR) Join §||y — G x3 A7+ )\Z (0(G,Bi) + 7l Billx + 12| Bil]«)
st. ATA=1
3
. 1
(STAR-S) S, o ¥ =G x3 A =S|t + 1Sl
FAS(606.5) + Bl + 2]

st. ATA = 1
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MILEE

= ADMM &k

o nin 5||y Q><3A||F+>\Z ¢(G, Bi) + nl|Bills + 2l £ill+)

st. ATA= I £, =5,
I3

1
+/\Z o(G, B;i) + 11l Billy + 2l Lill+) + ||£i—5i||%
n RERFTMLE
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m ITHE G-FEIE
G+ = argmin ;uy G xs AF[2

A
+ 52”7%19 —Blk X1 D1 X9 DQ X3 D3l|%
Z I
ngrl I+)\ZRTR )\ZRTBk X1D1 X2D2 X3D3—|—y X3AkT)
\
gk+1 — 81 *52

U
G" = LargNet(&;, &)
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m iTE B-Fio@

A
B+ =argmin §||Rigk+1 — B; x1 Dy x5 Dy x3 Dyl

g
+ §||£f — B+ P8l + MnllBillx
\
1
Bf"‘l :aI’gl’I}}H §||(BI+ VA X1 Dl X9 DQ X3 D3)B7,

— (ARG*Y + BLE + PF)|12 + M ||Bi 1
\
B! = Shrink(F;, Ay /v)
\
Bft'= sgn(F;)ReLU(|F;| — Ay /v)
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MEE

m IHE A-FiE)&

.1
Ak+1 _ argAr_legiI 5“)} _ gk-i—l X 3 A”%
4
Ak+1 _ UVT
4
A" = LargNet(U, V")
m iTE P-Fiali
Pt = P+ BLIH — B
¢
PF = Linear(0;)
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MEE

m BN BHR Y, SE N 8,7, 0.
m MR (G0, BY, L9, A, PP)
m Y r=1,... KEH
GF1 = LargNet (&, &)
BF = ShrinkNet(F;, M1 /v)
LE = SvtNet(BI T — PF/B, Mo/ B)
A*! = LargNet(U, V)
P! = Linear(©;)

m i X = GF xg AR
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B

| @ Addition © Subtraction
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BM3D: Dabov-Katkovnik-Egiazarian, IEEE TIP, 2007
BM4D: Maggioni-Katkovnik-Egiazarian-Foi, IEEE TIP, 2012
LLRT: Chang-Yan-Zhong, CVPR, 2017
LRTDTV: Wang-Chen-Han-He, RS, 2017
NGMeet: He-Yao-Li-Yokoya-Zhao-Zhang-Zhang, IEEE TPAMI, 2022
HSI-SDeCNN: Maffei-Haut-Paoletti-Plaza, IEEE TGRS, 2020
SMDS-Net: Xiong-Zhou-Tao-Lu-Zhou-Qian, IEEE TIP, 2022
RCILD: Peng-Wang-Cao-Zhao-Yao-Zhang-Meng, IEEE TGRS, 2024

m IR L = ||STAR-Net()) — X||3
m ARS8\, 5, 1,71, 72, D1, Dy, Dy

0D b b b O b O
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- Index Noisy Model-based methods Deep learning-based methods
BM3D BM4D LLRT LRTDTV NGMeet | HSI-SDeCNN SMDS-Net RCILD STAR-Net STAR-Net-S

PSNR 1 | 29.018 | 37.310 42.987 39.810  43.882 42.383 41.519 46.371 42.458  47.286 47.345
10 | SSIM T | 0.521 | 0.924 0.973 0.962 0.979 0.966 0.969 0.985 0.987 0.988 0.989
SAM | | 0.229 | 0.121 0.080 0.045 0.077 0.074 0.075 0.028 0.044 0.025 0.025
PSNR 1 | 21.501 | 32.582 37.630 34.250  38.245 36.791 36.840 42.337 38.514  42.435 42.500
30 | SSIM T | 0.146 | 0.846 0.930 0.921 0.877 0.915 0.926 0.972 0.971 0.972 0.972
SAM | | 0535 | 0.208 0.142 0.084 0.149 0.139 0.124 0.040 0.067 0.039 0.038
PSNR 1 | 18.402 | 29.982 35.242 32.067  33.618 34.399 34.342 37.481 35.838  39.853 39.963
50 | SSIM 1 | 0.042 | 0.790 0.888  0.899 0.862 0.887 0.893 0.907 0.951 0.956 0.956
SAM | | 0.779 | 0.264 0.190 0.107 0.195 0.177 0.134 0.066 0.092 0.050 0.047
PSNR 1 | 18.126 | 28.654 33.586 30.746  30.565 32.389 32.794 37.197 33.980  37.342 38.237
70 | SSIM 1 | 0.038 | 0.742 0.844 0.852 0.762 0.858 0.855 0.923 0.930 0.943 0.943
SAM | | 0.897 | 0.310 0.231 0.214 0.304 0.217 0.186 0.066 0.132 0.058 0.055
PSNR 1 | 21.784 | 32.132 37.361 34.218 36.578 36.490 36.374 40.463 37.212  41.729 42.011
Ave. | SSIMt | 0.187 | 0.826  0.909  0.909 0.870 0.907 0.911 0.943 0.953 0.965 0.965
SAM | | 0.610 | 0.226 0.161 0.113 0.181 0.152 0.130 0.050 0.077 0.043 0.041
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- Index Noisy Model-based methods Deep learning-based methods
BM3D BM4D LLRT LRTDTV NGMeet | HSI-SDeCNN SMDS-Net RCILD STAR-Net STAR-Net-S
PSNR 1 | 28.561 | 36.142 38.435 39.540  40.887 42.712 40.756 43.616 28.968  46.173 46.410
10 | SSIM T | 0522 | 0.923 0.946 0.966 0.909 0.978 0.937 0.961 0.972 0.980 0.982
SAM | | 0.738 | 0.338 0271 0.265 0.236 0.200 0.304 0.066 0.215 0.043 0.042
PSNR 1 | 20.897 | 30.869 32.793 32.681  38.887 37.301 36.710 39.498 22509  39.924 39.950
30 | SSIM 1 | 0.150 | 0.784 0.834 0.858 0.888 0.854 0.832 0.916 0.882 0.923 0.928
SAM | | 1.020 | 0519 0.445 0.387 0.335 0.260 0.399 0.085 0.243 0.083 0.083
PSNR 1 | 17.778 | 28.882 30.901 30.470  35.250 36.160 35.062 36.014 22.160  36.731 37.280
50 | SSIM 1 | 0.066 | 0.702 0.770  0.789 0.813 0.793 0.771 0.834 0.872 0.852 0.871
SAM | | 1.164 | 0.603 0.528 0.433 0.504 0.340 0.446 0.124 0.263 0.122 0.121
PSNR 1 | 16.966 | 27.694 30.140 29.159  34.198 35.110 32.891 35.315 21.262  35.964 36.286
70 | SSIM 1 | 0.051 | 0.657 0.740 0.761 0.776 0.761 0.602 0.811 0.857 0.831 0.843
SAM | | 1.205 | 0.652 0.560 0.433 0.547 0.500 0.980 0.135 0.290 0.130 0.129
PSNR 1 | 21.051 | 30.897 33.067 32.962  37.305 37.843 36.355 38.611 23.725  39.698 39.982
Ave. | SSIM 1 | 0.197 | 0.766 0.823  0.844 0.847 0.846 0.786 0.881 0.896 0.897 0.906
SAM | | 1.032 | 0528 0.451 0.380 0.406 0.325 0.532 0.102 0.253 0.095 0.094
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(a) Noisy

(2) HSI-SDeCNN (i) RCILD (j) STAR-Net (k) STAR-Net-S
2ol o 3o
I al | ¥¥\{l J oz} ‘ | o2
=) L 8 U - .
(b) BM3D (c) BM4D (d) LLRT (¢) LRTDTV (f) NGMeet
\\le [
o | Y e T === —_— (=
e " o~ W 5
Rl BN
. \ 2o i 35 v
a) Nois W o2 &l o U
(a) Noisy ;\J‘ L a\\‘\ ) J i
(2) HSI-SDeCNN (h) SMDS-Net (i) RCILD (j) STAR-Net (K) STAR-Net-S
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(g) NGMeet (h) HSI-SDeCNN (i) SMDS-Net (j) RCILD (k) STAR-Net (1) STAR-Net-S
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‘ Methods ‘ HSI-SDeCNN ‘ SMDS-Net ‘ RCILD ‘ STAR-Net ‘ STAR-Net-S ‘
‘ #Parameters ‘ 1,892,100 ‘ 5,103 ‘ 2,892,288 ‘ 27,702 ‘ 28,487 ‘

m AfjE] EEER

[ Methods | HS-SDeCNN | SMDS-Net | RCILD | STAR-Net [ STAR-NetS |

Time 11.027 ‘ 293.606 ‘ 30.706 ‘ 233.106 238.366
s Ry =
n ERRE LR
368 0.86 043 5108
36.7 0.855 0125 24
o ko
éaes % 0.85\/\_. % 042 ES
365 0.845 0415 g2
364 084 011 1
3 6 9 12 15 3 6 9 12 15 3 6 9 12 15 3 6 9 12 15
K K K K
(a) PSNR (b) SSIM (c) SAM (d) #Parameters
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