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图像去噪

给定图像 x ∈ Rd, 考虑数学模型

min
x

f(x) + γg(x)

f(x) 是数据拟合项, g(x) 是正则项
γ ≥ 0 是正则化参数

引入 x = y, 得到
min
x,y

f(y) + γg(x) s.t. x = y

增广拉格朗日函数为

Lα(x, y, u) = f(y) + γg(x) + u⊤(x − y) + 1
2

∥x − y∥2
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图像去噪

令 σ2 = αγ, 交替方向乘子算法

xk+1 = arg min
x

{σ2g(x) + 1
2

∥x − (yk − uk)∥2}

yk+1 = arg min
y

{αf(y) + 1
2

∥y − (xk+1 + uk)∥2}

uk+1 = uk + xk+1 − yk+1

具体形式为

xk+1 = proxσ2g(yk − uk) ⇒ 图像去噪

yk+1 = proxαf (xk+1 + uk) ⇒ 与观测图像保持一致

uk+1 = uk + xk+1 − yk+1
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图像去噪

如何选择 g(x)
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图像去噪

全变差 （Total Variation, TV）去噪方法

min
x

1
2

∥x − y∥2 + λ∥x∥TV

其中 ∥x∥TV = ∑ |(∇x)i|, 可取√
(xi+1 − xi)2 + (xi+n − xi)2 或 |xi+1 − xi| + |xi+n − xi|

小波稀疏（Wavelet Sparsity）去噪方法

min
x

1
2

∥x − y∥2 + λ∥Wx∥1

min
x

1
2

∥x − y∥2 + ∥λ ⊙ Wx∥1
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图像去噪

传统方法与深度学习方法

6 / 56



代表性工作

能否利用成熟的去噪器

模型 + 数据, 优势互补
当数据不足时, 无法进行端到端训练

Plug-and-Play Priors for Model Based Reconstruction, 2013

https://github.com/svvenkatakrishnan/plug-and-play-priors
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代表性工作: FFDNet

Toward a Fast and Flexible Solution for CNN-Based Image Denoising, 2018

https://github.com/cszn/FFDNet

min
x

1
2σ2 ∥x − y∥2 + λΦ(x)

⇓
x = F(y, σ; Θ)

8 / 56

https://github.com/cszn/FFDNet


代表性工作: PnP-SCI

Plug-and-Play Algorithms for Video Snapshot Compressive Imaging, 2022

https://github.com/liuyang12/PnP-SCI
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PnP-ADMM 算法

即插即用 （Plug-and-Play, PnP）框架

xk+1 = proxσ2g(yk − uk) ⇒ xk+1 = Hσ(yk − uk)

PnP-ADMM 迭代格式

xk+1 = Hσ(yk − uk)
yk+1 = proxαf (xk+1 + uk)
uk+1 = uk + xk+1 − yk+1

称 PnP-ADMM 为不动点迭代, 如果 (x∗, u∗) 满足

x∗ = Hσ(x∗ − u∗)
x∗ = proxαf (x∗ + u∗)
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PnP-DRS 算法

PnP-Douglas–Rachford Splitting (DRS) 迭代格式

xk+1/2 = proxαf (zk)
xk+1 = Hσ(2xk+1/2 − zk)
zk+1 = zk + xk+1 − xk+1/2

于是 PnP-DRS 的迭代可以表示为

zk+1 = T (zk)

T = 1
2

I + 1
2

(2Hσ − I)(2proxαf − I)

PnP-DRS 与 PnP-ADMM 等价
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PnP-DRS 收敛性

假设 因 σ 控制去噪的强度, Hσ 在较小的 σ 时接近恒等式。于是可以假设对
于所有 x, y ∈ Rd, 存在 ϵ ≥ 0 使得 Hσ : Rd → Rd 满足

∥(Hσ − I)(x) − (Hσ − I)(y)∥ ≤ ϵ∥x − y∥

定理 假设 Hσ 满足上述条件, 且 f 是 µ-强凸、可微函数。那么对于所有
x, y ∈ Rd, 存在 ϵ ≥ 0 使得

T = 1
2

I + 1
2

(2Hσ − I)(2proxαf − I)

满足

∥T (x) − T (y)∥ ≤ 1 + ϵ + ϵαµ + 2ϵ2αµ

1 + αµ + 2ϵαµ
∥x − y∥

若取 ϵ
(1+ϵ−2ϵ2)µ < α, ϵ < 1, 则 T 是收缩算子, 即 PnP-DRS 算法收敛
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PnP-ADMM 收敛性

定理 假设 Hσ 关于 ϵ ∈ [0, 1) 满足假设条件, 且 f 是 µ-强凸函数。那么
PnP-ADMM 算法收敛只需要

ϵ

(1 + ϵ − 2ϵ2)µ
< α

注意到 Hσ 是去噪器, R 是残差, I 是恒等变化

(I − Hσ)(y) = y − Hσ(y) = R(y)

于是假设条件等价于限制残差 R 的利普希斯常数
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案例
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高光谱图像异常检测

高光谱图像异常检测（Hyperspectral Anomaly Detection, HAD）

代表性方法
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高光谱图像异常检测

Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection,
2023

min
Z,E

∥Z∥WTNN + λ∥E∥1

s.t. X = A ∗ Z + E
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高光谱图像异常检测

如何刻画张量稀疏性?

元素稀疏

∥E∥1 =
h∑

i=1

v∑
j=1

z∑
k=1

|E(i, j, k)| ⇒ ∥E∥0 = ♯ {(i, j, k) | |E(i, j, k)| ̸= 0}

结构稀疏
∥E∥F,0 = ♯ {(i, j) | ∥E(i, j, :)∥2 ̸= 0}
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数学建模

Plug-and-Play Tensor Low-Rank Approximation (PnP-TLRA)

min
Z,E

∥Z∥WTNN + λ∥E∥1

s.t. X = A ∗ Z + E
⇓

(TLRA) min
Z,E,N

∥Z∥WTNN + λ∥E∥F,0 + µ∥N ∥2
F

s.t. X = A ∗ Z + E + N
⇓

(PnP-TLRA) min
Z,E,N

ϕ(Z) + λ∥E∥F,0 + µ∥N ∥2
F

s.t. X = A ∗ Z + E + N
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数学建模

TLRA

Sparse Anomaly

𝒳 ∈ ℝN×N×M

Original HSI Data

Gaussian Noise

PnP-

TLRA

Approximation Gaussian Noise

Sparse AnomalyApproximationDictionary

Dictionary

*

*

+ +

+ +

𝒰 𝒮 𝒱𝑇

…
…

||𝒵||𝑃𝑛𝑃

||𝒵||𝑊𝑇𝑁𝑁
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优化算法

PnP-ADMM 算法

Lβ(Z,E , N , Y) = ϕ(Z) + λ∥E∥F,0 + µ∥N ∥2
F

− ⟨Y , X − A ∗ Z − E − N ⟩ + β

2
∥X − A ∗ Z − E − N ∥2

F

迭代过程
Zk+1 = arg minZ ϕ(Z) + β

2 ∥X − A ∗ Z − Ek − N k − Yk/β∥2
F

Ek+1 = arg minE λ∥E∥F,0 + β
2 ∥X − A ∗ Zk+1 − E − N k − Yk/β∥2

F

N k+1 = arg minN µ∥N ∥2
F + β

2 ∥X − A ∗ Zk+1 − Ek+1 − N − Yk/β∥2
F

Yk+1 = Yk − β(X − A ∗ Zk+1 − Ek+1 − N k+1)

算法产生的点列 {(Zk, Ek, N k, Yk)} 收敛到 TLRA 的稳定点, 在一定的条件
下 PnP-TLRA 也是收敛的
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数值实验

GRXD: Hyperspectral Remote Sensing, 2012
RPCA-RX: Low-Rank and Sparse Matrix Decomposition-Based Anomaly Detection for Hyperspectral
Imagery, 2019
LSMAD: A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for
Hyperspectral Anomaly Detection, 2015
GTVLRR: Graph and Total Variation Regularized Low-Rank Representation for Hyperspectral Anomaly
Detection, 2020
GAED: Hyperspectral Anomaly Detection with Guided Autoencoder, 2022
GNLTR: Generalized Nonconvex Low-Rank Tensor Representation for Hyperspectral Anomaly
Detection, 2023
ELRSF-SP: Hyperspectral Anomaly Detection via Enhanced Low-Rank and Smoothness Fusion
Regularization Plus Saliency Prior, 2024
TPCA: A Preprocessing Method for Hyperspectral Target Detection Based on Tensor Principal
Component Analysis, 2018
PTA: Prior-Based Tensor Approximation for Anomaly Detection in Hyperspectral Imagery, 2022
PCA-TLRSR: Learning Tensor Low-Rank Representation for Hyperspectral Anomaly Detection, 2023
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数值实验

数据集 (a) San Diego (b) HYDICE (c) ABU-airport (d) ABU-beach (e)-(f) ABU-urban

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
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数值实验

接收者操作特征曲线（Receiver Operating Characteristic, ROC)

(a) (b) (c)

(d) (e) (f)
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数值实验

曲线下面积（Area Under the Curve, AUC)
GRXD RPCA-RX LSMAD GTVLRR TPCA PTA PCA-TLRSR GAED GNLTR ELRSF-SP TLRA PnP-TLRA

SD 0.8886 0.9165 0.9457 0.9648 0.8849 0.9868 0.9923 0.9889 0.9838 0.9878 0.9927 0.9942
HYDICE 0.9857 0.9842 0.9906 0.9918 0.8242 0.8396 0.9802 0.9639 0.9859 0.9768 0.9840 0.9968

ABU-airport-1 0.8221 0.8089 0.8341 0.8957 0.8023 0.7698 0.9291 0.8106 0.9293 0.8221 0.9331 0.9303
ABU-airport-2 0.8403 0.8431 0.9192 0.8911 0.8891 0.8995 0.9345 0.9272 0.9242 0.8891 0.9409 0.9523
ABU-airport-3 0.9288 0.9275 0.9398 0.9287 0.9297 0.7369 0.9233 0.8638 0.9330 0.9209 0.9379 0.9380
ABU-airport-4 0.9526 0.9627 0.9864 0.9776 0.9432 0.9890 0.9914 0.9654 0.9606 0.9876 0.9932 0.9918
ABU-beach-1 0.9804 0.9761 0.9778 0.9703 0.9860 0.9682 0.9831 0.9223 0.9638 0.9780 0.9868 0.9895
ABU-beach-2 0.9106 0.9097 0.9056 0.9348 0.8061 0.8862 0.9331 0.5061 0.9472 0.9097 0.9580 0.9533
ABU-beach-3 0.9998 0.9995 0.9996 0.9866 0.9982 0.9483 0.9994 0.9891 0.9928 0.9945 0.9994 0.9996
ABU-beach-4 0.9538 0.9599 0.9349 0.9803 0.9338 0.9000 0.9755 0.8514 0.9044 0.9698 0.9899 0.9902
ABU-urban-1 0.9907 0.9922 0.9818 0.8742 0.9390 0.8940 0.9923 0.9409 0.9325 0.9907 0.9934 0.9951
ABU-urban-2 0.9946 0.9957 0.9849 0.8628 0.9409 0.9701 0.9928 0.9958 0.9874 0.9946 0.9983 0.9994
ABU-urban-3 0.9513 0.9577 0.9633 0.9365 0.8224 0.9090 0.9832 0.9725 0.9667 0.9513 0.9888 0.9855
ABU-urban-4 0.9887 0.9871 0.9809 0.9205 0.9835 0.9937 0.9857 0.9556 0.9931 0.9909 0.9883 0.9950
ABU-urban-5 0.9690 0.9658 0.9610 0.9347 0.9370 0.8693 0.9811 0.9148 0.9297 0.9658 0.9821 0.9837

Average 0.9438 0.9458 0.9537 0.9367 0.9080 0.9040 0.9718 0.9046 0.9556 0.9553 0.9778 0.9796
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数值实验

San Diego 数据集比较

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
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数值实验

HYDICE 数据集比较

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
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数值实验

统计可分性比较

(a) (b) (c)

(d) (e) (f)
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数值实验

目标函数损失

(a) (b) (c)

(d) (e) (f)
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数值实验

去噪模块比较
Datasets BM3D DnCNN LeNet FFDNet

AUC Time AUC Time AUC Time AUC Time
San Diego 0.9911 17.74 0.9896 15.65 0.9902 17.72 0.9942 13.21
HYDICE 0.9946 21.02 0.9883 22.15 0.9915 16.63 0.9968 15.43

ABU-airport-2 0.9436 13.93 0.9407 11.98 0.9344 12.48 0.9523 8.69
ABU-beach-2 0.9491 17.66 0.9501 19.58 0.9472 15.4 0.9533 12.68
ABU-urban-2 0.9955 14.84 0.9951 12.43 0.9986 13.95 0.9994 10.21

运行时间比较
Datasets TPCA PTA PCA-TLRSR TLRA PnP-TLRA

San Diego 34.66 26.37 10.99 5.89 10.63
HYDICE 25.39 22.76 9.31 4.89 24.49

ABU-airport 41.63 29.21 11.32 6.12 9.71
ABU-beach 29.04 38.24 15.61 10.86 12.31
ABU-urban 36.95 28.01 17.35 8.38 11.82
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小结

如何选择去噪器

如何选择模型参数
Tuning-Free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems, 2020

如何改善收敛性
Enhanced Convergent PnP Algorithms for Image Restoration, 2021
Wasserstein-based Projections with Applications to Inverse Problems, 2022

综述
Image Denoising: The Deep Learning Revolution and Beyond, 2023
Learned Reconstruction Methods With Convergence Guarantees, 2023
Plug-and-Play Methods for Integrating Physical and Learned Models in Computational
Imaging, 2023
Learning to Optimize: A Tutorial for Continuous and Mixed-Integer Optimization, 2024
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压缩感知

压缩感知通常求解以下优化问题

min
x

1
2

∥Φx − y∥2
2 + λ∥Ψx∥1 (1)

迭代收缩阈值算法（Iterative Soft Thresholding Algorithm, ISTA）
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ISTA

梯度步
r(k) = x(k−1) − ρΦ⊤(Φx(k−1) − y)

收缩阈值步
x(k) = arg min

x

1
2

∥x − r(k)∥2
2 + λ∥Ψx∥1

⇓

x(k) = Proxλϕ(r(k))
= sign(r(k)) · max(|r(k)|λ, 0)

收敛速度比较慢

性能很大程度上取决于超参数的选择
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LISTA

深度展开网络（Deep Unfolding Networks, DUNs）

LISTA 将 ISTA 的每一步迭代模拟为神经网络的一层

r(k) = x(k−1) − ρΦ⊤(Φx(k−1) − y)

⇓
x(k+1) = hθ(x(k−1) − ρΦ⊤(Φx(k−1) − y))
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ISTA-Net

ISTA-Net = LISTA + CNN

min
x

1
2

∥Φx − y∥2
2 + λ∥Ψx∥1

⇓

min
x

1
2

∥Φx − y∥2
2 + λ∥F (x)∥1
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案例
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高光谱图像去噪

为什么选择高光谱图像

多样任务: 去噪, 分类, 异常检测, 融合, 解混

https://github.com/xianchaoxiu/Hyperspectral-Imaging
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高光谱图像去噪

高光谱图像去噪/高光谱图像恢复

基于模型: 全变差, 稀疏编码, 低秩表示

数据驱动: 卷积神经网络, 混合网络, 无监督网络
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高光谱图像去噪

Google Scholar 中关于“tensor hyperspectral”的统计

出色的数据表示, 多样的张量分解, 较低的计算复杂度
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数学建模

子空间张量表示框架

(P) min
G,A

1
2

∥Y − G ×3 A∥2
F + λΩ(G)

s.t. A⊤A = I

Liu-Li-Wang-Tao-Du-Chanussot, SCIS, 2023
Wang-Hong-Han-Li-Yao-Gao, IEEE GRSM, 2023
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数学建模

Xiong-Zhou-Tao-Lu-Zhou-Qian, IEEE TIP, 2022

min
G,Bi,A

1
2

∥Y − G ×3 A∥2
F + λ

∑
i

(ϕ(G, Bi) + γ1∥Bi∥1)

s.t. A⊤A = I

多维度表示

ϕ(G, Bi) = 1
2

∥RiG − Bi ×1 D1 ×2 D2 ×3 D3∥2
F

如何刻画先验信息?

如何开发快速算法?
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数学建模

稀疏张量辅助表示 (Sparse tensor aided representation, STAR)

(STAR) min
G,Bi,A

1
2

∥Y − G ×3 A∥2
F + λ

∑
i

(ϕ(G, Bi) + γ1∥Bi∥1 + γ2∥Bi∥∗)

s.t. A⊤A = I

⇓

(STAR-S) min
G,S,Bi,A

1
2

∥Y − G ×3 A − S∥2
F + µ∥S∥1

+ λ
∑

i

(ϕ(G, Bi) + γ1∥Bi∥1 + γ2∥Bi∥∗)

s.t. A⊤A = I
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优化算法

ADMM 算法

min
G,Bi,Li,A

1
2

∥Y − G ×3 A∥2
F + λ

∑
i

(ϕ(G, Bi) + γ1∥Bi∥1 + γ2∥Li∥∗)

s.t. A⊤A = I, Li = Bi

⇓

Lβ(G, Bi, Li, A, Pi) = 1
2

∥Y − G ×3 A∥2
F + ⟨Pi, Li − Bi⟩

+ λ
∑

i

(ϕ(G, Bi) + γ1∥Bi∥1 + γ2∥Li∥∗) + β

2
∥Li − Bi∥2

F

深度展开网络
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优化算法

计算 G-子问题

Gk+1 = arg min
G

1
2

∥Y − G ×3 Ak∥2
F

+ λ

2
∑

i

∥RiG − Bk
i ×1 D1 ×2 D2 ×3 D3∥2

F

⇓

Gk+1 = (I + λ
∑

i

R⊤
i Ri)−1(λ

∑
i

R⊤
i Bk

i ×1 D1 ×2 D2 ×3 D3 + Y ×3 Ak⊤)

⇓

Gk+1 = E1 ∗ E2

⇓

Gk+1 = LargNet(E1, E2)
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优化算法

计算 Bi-子问题

Bk+1
i = arg min

Bi

λ

2
∥RiGk+1 − Bi ×1 D1 ×2 D2 ×3 D3∥2

F

+ β

2
∥Lk

i − Bi + Pk
i /β∥2

F + λγ1∥Bi∥1

⇓

Bk+1
i = arg min

Bi

1
2

∥(βI + λI ×1 D1 ×2 D2 ×3 D3)Bi

− (λRiGk+1 + βLk
i + Pk

i )∥2
F + λγ1∥Bi∥1

⇓
Bk+1

i = Shrink(Fi, λγ1/ν)
⇓

Bk+1
i = sgn(Fi)ReLU(|Fi| − λγ1/ν)
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优化算法

计算 A-子问题

Ak+1 = arg min
A⊤A=I

1
2

∥Y − Gk+1 ×3 A∥2
F

⇓

Ak+1 = UV⊤

⇓

Ak+1 = LargNet(U, V⊤)

计算 Pi-子问题
Pk+1

i = Pk
i + β(Lk+1

i − Bk+1
i )

⇓

Pk+1
i = Linear(Θi)
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优化算法

输入: 数据 Y , 参数 λ, β, γ1, γ2, ν

初始化: (G0, B0
i , L0

i , A0, P0
i )

当 k = 1, . . . , K 更新

Gk+1 = LargNet(E1, E2)

Bk+1
i = ShrinkNet(Fi, λγ1/ν)

Lk+1
i = SvtNet(Bk+1

i − Pk
i /β, λγ2/β)

Ak+1 = LargNet(U, V⊤)

Pk+1
i = Linear(Θi)

输出: X = Gk+1 ×3 Ak+1
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优化算法
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数值实验

对比方法

BM3D: Dabov-Katkovnik-Egiazarian, IEEE TIP, 2007
BM4D: Maggioni-Katkovnik-Egiazarian-Foi, IEEE TIP, 2012
LLRT: Chang-Yan-Zhong, CVPR, 2017
LRTDTV: Wang-Chen-Han-He, RS, 2017
NGMeet: He-Yao-Li-Yokoya-Zhao-Zhang-Zhang, IEEE TPAMI, 2022
HSI-SDeCNN: Maffei-Haut-Paoletti-Plaza, IEEE TGRS, 2020
SMDS-Net: Xiong-Zhou-Tao-Lu-Zhou-Qian, IEEE TIP, 2022
RCILD: Peng-Wang-Cao-Zhao-Yao-Zhang-Meng, IEEE TGRS, 2024

损失函数 L = ∥STAR-Net(Y) − X ∥2
F

可训练参数 λ, β, µ, γ1, γ2, D1, D2, D3
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数值实验

ICVL 数据集比较
σ Index Noisy Model-based methods Deep learning-based methods

BM3D BM4D LLRT LRTDTV NGMeet HSI-SDeCNN SMDS-Net RCILD STAR-Net STAR-Net-S

10
PSNR ↑ 29.018 37.310 42.987 39.810 43.882 42.383 41.519 46.371 42.458 47.286 47.345
SSIM ↑ 0.521 0.924 0.973 0.962 0.979 0.966 0.969 0.985 0.987 0.988 0.989
SAM ↓ 0.229 0.121 0.080 0.045 0.077 0.074 0.075 0.028 0.044 0.025 0.025

30
PSNR ↑ 21.591 32.582 37.630 34.250 38.245 36.791 36.840 42.337 38.514 42.435 42.500
SSIM ↑ 0.146 0.846 0.930 0.921 0.877 0.915 0.926 0.972 0.971 0.972 0.972
SAM ↓ 0.535 0.208 0.142 0.084 0.149 0.139 0.124 0.040 0.067 0.039 0.038

50
PSNR ↑ 18.402 29.982 35.242 32.067 33.618 34.399 34.342 37.481 35.838 39.853 39.963
SSIM ↑ 0.042 0.790 0.888 0.899 0.862 0.887 0.893 0.907 0.951 0.956 0.956
SAM ↓ 0.779 0.264 0.190 0.107 0.195 0.177 0.134 0.066 0.092 0.050 0.047

70
PSNR ↑ 18.126 28.654 33.586 30.746 30.565 32.389 32.794 37.197 33.980 37.342 38.237
SSIM ↑ 0.038 0.742 0.844 0.852 0.762 0.858 0.855 0.923 0.930 0.943 0.943
SAM ↓ 0.897 0.310 0.231 0.214 0.304 0.217 0.186 0.066 0.132 0.058 0.055

Ave.
PSNR ↑ 21.784 32.132 37.361 34.218 36.578 36.490 36.374 40.463 37.212 41.729 42.011
SSIM ↑ 0.187 0.826 0.909 0.909 0.870 0.907 0.911 0.943 0.953 0.965 0.965
SAM ↓ 0.610 0.226 0.161 0.113 0.181 0.152 0.130 0.050 0.077 0.043 0.041
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数值实验
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数值实验

WDC 数据集比较
σ Index Noisy Model-based methods Deep learning-based methods

BM3D BM4D LLRT LRTDTV NGMeet HSI-SDeCNN SMDS-Net RCILD STAR-Net STAR-Net-S

10
PSNR ↑ 28.561 36.142 38.435 39.540 40.887 42.712 40.756 43.616 28.968 46.173 46.410
SSIM ↑ 0.522 0.923 0.946 0.966 0.909 0.978 0.937 0.961 0.972 0.980 0.982
SAM ↓ 0.738 0.338 0.271 0.265 0.236 0.200 0.304 0.066 0.215 0.043 0.042

30
PSNR ↑ 20.897 30.869 32.793 32.681 38.887 37.391 36.710 39.498 22.509 39.924 39.950
SSIM ↑ 0.150 0.784 0.834 0.858 0.888 0.854 0.832 0.916 0.882 0.923 0.928
SAM ↓ 1.020 0.519 0.445 0.387 0.335 0.260 0.399 0.085 0.243 0.083 0.083

50
PSNR ↑ 17.778 28.882 30.901 30.470 35.250 36.160 35.062 36.014 22.160 36.731 37.280
SSIM ↑ 0.066 0.702 0.770 0.789 0.813 0.793 0.771 0.834 0.872 0.852 0.871
SAM ↓ 1.164 0.603 0.528 0.433 0.504 0.340 0.446 0.124 0.263 0.122 0.121

70
PSNR ↑ 16.966 27.694 30.140 29.159 34.198 35.110 32.891 35.315 21.262 35.964 36.286
SSIM ↑ 0.051 0.657 0.740 0.761 0.776 0.761 0.602 0.811 0.857 0.831 0.843
SAM ↓ 1.205 0.652 0.560 0.433 0.547 0.500 0.980 0.135 0.290 0.130 0.129

Ave.
PSNR ↑ 21.051 30.897 33.067 32.962 37.305 37.843 36.355 38.611 23.725 39.698 39.982
SSIM ↑ 0.197 0.766 0.823 0.844 0.847 0.846 0.786 0.881 0.896 0.897 0.906
SAM ↓ 1.032 0.528 0.451 0.380 0.406 0.325 0.532 0.102 0.253 0.095 0.094
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数值实验

Indian Pines 数据集比较

53 / 56



数值实验

分类结果
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数值实验

参数选择
Methods HSI-SDeCNN SMDS-Net RCILD STAR-Net STAR-Net-S

#Parameters 1,892,100 5,103 2,892,288 27,702 28,487

时间比较
Methods HSI-SDeCNN SMDS-Net RCILD STAR-Net STAR-Net-S

Time 11.027 293.606 30.706 233.106 238.366

迭代次数比较
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小结

https://deepinv.github.io/deepinv
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Q&A
Thank you!
感谢您的聆听和反馈


