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m A Survey of Model Compression Techniques: Past, Present, and Future, 2025

Nul r of parameters

Weight pruning
Pruning
Neurons pruning

Low-rank decomposition
Decomposition
Depthwise separable convolution

|

Parameter type

Model compression

White-box distillation

Black-box distillation
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m TensorSLM: Energy-efficient Embedding Compression of Sub-billion Parameter
Language Models on Low-end Devices, 2025
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m Distilling Large Language Models for Efficient Clinical Information Extraction,
2025
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m DSDrive: Distilling Large Language Model for Lightweight End-to-End
Autonomous Driving, 2025
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m Distilling the Knowledge from Large-Language Model for Health Event

Prediction, 2024
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m Magnitude

Learning both weights and connections for efficient neural network

S Han, J Poal, J Tran, W Dally - Advances in neural ..., 2015 - proceedings.neurips.cc
Neural networks are both computationally intensive and memory intensive, making them
difficult to deploy on embedded systems. Also, conventional networks fix the architecture ...
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m SparseGPT

Sparsegpt: Massive language models can be accurately pruned in one-shot
E Frantar, D Alistarh - International conference on machine ..., 2023 - proceedings.mir.press

We show for the first time that large-scale generative pretrained transformer (GPT) family

models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal ...
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m Optimal Brain Surgeon (OBS) [RIE
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m SCIS4EE — NVIDIA A100 GPU

Table 1. OPT perplexity results on raw-WikiText2.

TOPT 50% | 125 | 350M | 138 | | oPT | Sparsity | 2.7B | 6.7B | I13B | 30B | 66B | 175B |
Dens 0% | 1247 | 10.86 | 10.13 | 9.56 | 934 | 8.35
| Dense 2766 | 2200 | 1462 | LD | 0% | | | | | | |
: Magnitude 50% | 265. | 969. | 12e4 | 168. | 4263 | 4.3e4
Magnitude 193. 1 97.80 | 1.7e4 SparseGPT | 50% | 1348 | 1155 | 1117 | 9.79 | 9.32 | 8.21
AdaPrune 38.66 | 48.46 | 32.52 s GPT | 48 | 1498 | 1256 | 11.77 | 1030 | 9.65 | 845
parse : : . . . .65 X
SparseGPT | 3685 | 3158 | 17.46 ‘ SparseGPT ‘ 2:4 ‘ 17.18 ‘ 14.20 ‘ 12.96 ’ 10.90 ‘ 10.09 ‘ 8.74 |

Table 2. ZeroShot results on several datasets for sparsified variants of OPT-175B.

| Method | Spars. | Lamb. | PIQA | ARC-e | ARC-c | Story. | Avg. |
| Dense | 0% | 7559 | 8107 | 71.04 | 4394 | 79.82 | 70.29 |
| Magnide | 50% | 00.02 | 5473 | 2803 | 2560 | 47.10 | 3110 |

SparseGPT | 50% | 78.47 | 80.63 | 7045 4394 | 79.12 | 70.52
SparseGPT 4:8 80.30 | 79.54 | 68.85 4130 | 78.10 | 69.62
SparseGPT | 24 80.92 | 79.54 | 68.77 | 39.25 | 77.08 | 69.11
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m LoRAP: Transformer Sub-Layers Deserve Differentiated Structured Compression
for Large Language Models, 2024
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m SlimLLM (Huawei Noah's Ark Lab, China)

SlimLLM: Accurate Structured Pruning for Large Language Models

Jialong Guo' Xinghao Chen' Yehui Tang' Yunhe Wang'

Abstract
Large language models(LLMs) have garnered sig-
nificant attention and demonstrated impressive
capabilities in a wide range of applications. How-

translation to complex reasoning and problem-solving. With
the enhancement of model capabilities, there is often a cor-
responding surge in computational expenses. This often
limits the deployment and application of LLMs.
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n EENKER
Qi=XWE K, = XWk VvV, = XWV

KT
head; = Softmax (QZK’ > Vi
Vi

h
MHA(X) =) " head;W¢

i=1

m Pearson(-) fHIAE
Score; = —Pearson(XW,, XW, — X;W?)
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n AERIEZE
Input: pruned attention heads set: Sp={head;, if head;
is pruned. }, unpruned attention heads set: S_,={head;,
if head; is unpruned.}
Output: left attention heads set .Sy ;
Sleft = Sfp
O_, = Output(S_p)
Oau = Output(Sy, + S_p)
Sim = Pearson(O_p, Oan)
for h; € S, do
for h; € S_, do
O = Output(S_, — hj + h;)
s = Pearson(O, Oan)
if s > Sim then

Sim = s
Szeft = S_p — h]' + h;
end if
end for
S—p = Sleft
end for
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n THARLE

Ratio Method  |WikiText2 PTB |BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA |Average

Ratio=0% Llama-7B ‘ 1262 22.14 | 73.18 7835  72.99 67.01 6745 4138 424 | 63.25
LLM-pruner| 19.09  34.21 |57.06 75.68 66.8 59.83 60.94 36.52 40.0 | 56.69
Ratio=20% LoRAPrune | 20.67  34.12 | 5798 75.11 6581 59.90 62.14 3459 39.98 | 56.50
w/o tune LoRAP 15.69 2586 | 71.93 76.44  69.98 65.9 60.56 38.48 40.4 | 60.53
Ours 1595  26.09 | 72.72 7595  69.82 66.06 64.48 39.33 402 | 61.22
LLM-pruner| 17.58  30.11 | 64.62 772 68.8 63.14 64.31 36.77 39.8 | 59.23

Ratio=20% LoRAPrune 16.80  28.75|65.62 79.31  70.00 62.76 65.87 37.69 39.14 | 60.05
w/ tune LoRAP 16.35  27.06 | 72.94 76.93 70.9 65.75 64.31 3993 41.2 61.7
Ours 15.55  26.66 | 74.71 76.61  71.23 66.54 66.96 40.61 402 | 62.41
LLM-pruner| 112.44 255.38|52.32 59.63  35.64 53.20 33.50 27.22 3340 | 42.13
Ratio=50% LoRAPrune | 121.96 260.14|51.78 5690  36.76 53.80 33.82 2693 33.10 | 41.87
w/o tune LoRAP 56.96  87.71 | 57.8 63.82  46.96 57.3 4036 27.73 36.80 | 47.25
Ours 37.89  67.68 | 63.33 6540 49.94 58.80 45.83 30.38 37.00 | 50.10
LLM-pruner| 38.12  66.35|60.28 69.31  47.06 53.43 4596 29.18 35.60 | 48.69

Ratio=50% LoRAPrune | 30.12  50.30 | 61.88 71.53  47.86 55.01 45.13 31.62 34.98 | 49.71
w/ tune LoRAP 30.90  48.84 | 63.00 69.64 54.42 58.41 51.94 32.00 3580 | 52.17
Ours 26.71  42.19 | 62.78 68.99  54.73 61.01 54.55 33.28 36.80 | 53.16

29/35



Y AR AETE ST

n THARLE

Ratio Method \WikiTeth PTB |BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA\Average

Ratio=0% Llama2-7B‘ 12.18 4725 | 71.04 78.40  72.96 67.17 69.32  40.53 40.80 ‘ 62.89
Ratio=20% LoRAP 15.02 5844 |69.24 7639  69.15 65.11 61.99 3558 38.60 | 59.44
w/o tune  Ours 1570  56.33 | 69.79 76.28  68.88 63.54 65.74 39.08 39.80 | 60.44
Ratio=20% LoRAP 14.67  57.52|70.89 7813  69.93 65.67 65.99 38.48 39.60 | 61.24
w/ tune  Ours 1528  55.46 | 72.29 78.02  70.95 64.88 67.17 38.99 39.60 | 61.70
Ratio=50% LoRAP 60.89  282.22| 61.86 62.23  43.98 55.41 3851 27.65 33.00 | 46.09
w/o tune Ours 38.64 141.06| 62.69 64.74 4591 53.28 39.73  29.01 332 | 46.93
Ratio=50% LoRAP 26.26 101.22| 63.27 70.78  55.14 57.85 52.15 30.97 36.00 | 52.31
w/ tune  Ours 27.29  88.28 | 64.19 69.04  53.60 55.33 52.53 32.08 37.40 | 52.02
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m Toward Adaptive Large Language Models Structured Pruning via Hybrid-grained

Weight Importance Assessment, 2025
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m Efficient Large Language Models: A Survey, 2024
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m Efficient Large Language Models: A Survey, 2024

Itis a nice restaurant.
The review is positive.

Itis a nice restaurant.
The review is positive.
The dining room is dirty.
The review is negative.

This t-shirt looks cool.
The review is positive.

Training Data

This t-shirt looks cool.
The review is positive.

food tastes good.
The review i

embedding

The dining room is dirty.

The review is negative.

Output

This food tastes good.
The review is positive

Demonstration Selection Demonstration Ordering

(a) Demonstration Organization

Is the review positive or negative?

) ) Is the review positive or negative?
Itis a nice restaurant.

. The review is positive.

[The dining room is dirty.
.The review is negative.

This t-shirt looks cool.

Itis a nice restaurant. The review is positive.

[The dining room is dirty. The review is negative.

This t-shirt looks cool. The review is positive.

. The review is positive.

Multi-Step Reasoning Instruction Generation

(b) Template Formatting
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m Optimizing LLMs for Resource-Constrained Environments: A Survey of Model
Compression Techniques, 2025

m Efficient Inference for Large Reasoning Models: A Survey, 2025
m Compression Laws for Large Language Models, 2025
m A Survey on Model Compression for Large Language Models, 2024

m Model Compression and Efficient Inference for Large Language Models: A
Survey, 2024

m A Survey on Transformer Compression, 2024

m Efficient Large Language Models: A Survey, 2024
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