2%

https://xianchaoxiu.github.io
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LT Python MEAA — S ER AR (2121330i%
EPRFSEE, ERCH A, Bl RSB B ) :

1 U (8%, SESXEON), HEER)

o

python + 7

def binary_search_iterative(nums, target
kninums -1 # MRS

BRER—EKEXBZNER

mld Ieﬂ nght left) /2 # 3 3 (H
Fr
|f nums m\d ==t
(-Mnumsrmd
else.
right = rmd I.Jﬁlﬂ":+!' =
return -1 # K
# M

if _name__ =
ar=[25 812\02338 56 72,91
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m Attention is All You Need, 2017

Output
Probabilties

Forward

Add & Norm

Wuiti-Head

Attention
Nx
(Add s Nom ]
K Ada 8 Norm
Masked
MUlt-Head WMiti-Head
Attention
[ —
J
Positional Pasitional
Encading Encoding
Input Qutput
Embeceing Ermbedcing
Inputs Qutputs
(shifted right)

Scaled Dot-Product Attention

Mathul

Multi-Head Attention

!

Scaled Dot-Product h
Attention
I I I

[ Linear [Linear [ Linear

% K Q

3/40



m Large Language Models for Mathematical Reasoning: Progresses and Challenges,

2024

Q: Beth bakes 4, or 2 dozen batches of
cookies in a week. If these cookies are
shared amongst 16 people equally, how
a b many cookies does each person consume?

h R: Beth bakes 4 2 dozen batches of
cookies for a total of 4%2=<<4x%x2=
8 >> 8 dozen cookies. There are 12
cookies in a dozen and she makes 8 dozen
cookies for a total of 1248 =<< 1248 =
96 >> 96 cookies. She splits the 96
cookies equally amongst 16 people so

C

Q: a=7 inches; b=24 inches; ¢=25 inches;
h=6.72 inches; What is its area? (Unit:

square inches) they each eat 96/16 =<< 96/16 = 6 >>
A: 84 6 cookies.
A: 6

4/40



m A Survey on Large Language Models for Code Generation, 2024

[ Step 1: Code Task ]_’[ Step 4: Self-Reflection ]

. . ..] does not work as
Write a Python script to Exgected because it uses
print qll unique elements the built-in “set()"
in a list, function in Python, which
does not maintain the order
l of elements.[..]

@ (Optional) L} , .?.?:’)

(o))
Code LLM -
PSS (Code) LLM
Step 2: Traject Step 3: Evaluati
[ ep rajectory Fecntor ep valuation ]
assert unique_elements([1,
def unique_elements(lst): 2, 3, 4, 4]) ==1[1, 2, 3, 4]
result = set(lst) assert unique_elements
return list(result)

(C'a', 'b', 'c', 'a', 'd'D 6
= [a’, b, 'c’, 'd']
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m http://www.1llmdad.com/

/ Large Language Models

Diverse Algorithm Design Tasks

“ GLM*

Gor

* Claude* C DouBao*
\

m Llama* (I Yi*

{a Qwen* & DeepSeek*

Optimization Machine Learning Science Discovery

Continuous Opt. ! Agent Design

Fluid Dynamics

~

&

evaluat] population, population,

population, \I/ new algorithms

E>§‘E>

Search Methods

Weights & Biases 1' Tensorboard < GUI
Multi- Sampling methods -
objective 5 = " "
: P
Neighborhood Search - [
X . = [
Single- o2 -
objective Evolutionary Search 5 = -

&
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ETFIRTNTE

m Chain-of-Experts: When LLMs Meet Complex Operations Research Problems,

2023

Problem Input: /it ihe cor wing, we tackle the Mulri-level Lot Sizing Problen Backlogging. We assum.
™
O Conductor Programmer:

\_ Evaluator @

Terminology Interpreter:

Modeling Expert:

I apo

Modeling Expert:

i

N = forward pass
Evaluator’s ®
Feedback: =+ Final answer = backward pass

Run succes

= forward pass
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0.58
0.56
>
Q
£
50.54
< —&— temperature=0.0
0.52 temperature=0.3
temperature=0.6
0.50 temperature=0.9

2 3 4 5 6 7
Forward Steps

(a) CoE performance on different parameter settings.

99.2%

100
88.3%
80
69.4%
w0
bl
H) 0,
H 24.0% 47.3%
g 38.0% 38.5%
£ 40 343%
20 14.1%
102% 103%
6.4%
2 g 5 i1 5 2 = 2 5 £ 2
§ & £ & & % 2 S B E %
5 £ £ E & £ E 3 £ El 3
: i & & & 2 % z § § 2
g 5 2 E § @ 2 B £ Z
= H = g B2 = = ] <
£ B & 8 ° % =4
g E E
(] o

(b) Selection frequency of individual expert.
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m Scalable Optimization Modeling with (MI)LP Solvers and Large Language
Models, 2024

Task: Debug the runtime error for the
material capacity limit constraint

/

MachineTimeCap | |
LaborCap

MaterialCap

For each
material, the
amount used

should not exceed
the available

capacity <

MaterialReq

\
| Production

LaborReq / MaterialReq

Prompt

The execution of the following code results in a runtime error:

import numpy as np
import gurobipy as gp

R = data["R"] # scalar parameter
MachineTimeReq P = data["P"] # scalar parameter

MaterialCap = np.array(data[“"MaterialCap"]) # ['R’'
= np.array(data["MaterialReq"]1) # ['R', 'P'l]

Prod = model.addVars(P, vtype=gp.GRB.CONTINUOUS, name="production")
\ RevenuePerPrud/

# Add constraints for the quantity of raw material usage not exceeding available
amounts
for j in range(N):

model.addConstr(gp.quicksum(MaterialReq[j, il * Prod[i] for i in range(P)) \\
<= Available[j], name=f"material_usage_limit_{j}")

Here is the error message:

IndexError: index 4 is out of bounds for axis @ with size 4

Identify the error and fix it.
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Performance (%)

60

40

20

-4
//
/
/ y
S
Yy @ GPT4-0 Easy
g / S GPT4-0 Hard
LLaMa3-70B Easy
- LLaMa3-70B Hard
2 3 4 5 6

Number of Debugging Iterations

Error rate (%)

100
80
70
60
50
40
30
20
i
0 ..-_
Extraction Modeling Coding
Failure Type
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EFFINTE

m ORLM: A Customizable Framework in Training Large Models for Automated
Optimization Modeling, 2025

»—C— 8

Mokl Code

= — (e

Scenario Question

=1

X

data
SccdDuta Training Data Poot Bitering
Obj&Constraints
@ Augmentaton
Trsining LMK
Table 7 Ablation study on OR-INSTRUCT augmentations.
MAMO MAMO Micro Macro
Method NL4OPT EasyLP ComplexLP IndustryOR Avg Avg
Full Augmentations 78.3% 80.6% 43.1% 21.0% 68.6% 55.7%
w/o Altering Obj&Const 77.5% 79.2% 36.4% 20.0% 66.4% 53.2%
w/o Rephrasing Questions 74.2% 77.3% 41.1% 15.0% 65.1% 51.9%
w/o Multiple Modeling 78.3% 78.0% 38.8% 18.0% 66.2% 53.2%
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m LLMOPT: Learning to Define and Solve General Optimization Problems

Scratch, 2025
(a) Data

Optimization
Problems

=] 5-Element f
for Problem

5-Element /* with Desirability Label &

@ Desirability (abeieaby expery

Label 5-Element Generate 5-Element by GPT-4
by Expert & Label by Expert

2B s-smmenunwmmw‘W

Label Code Generate Code by GPT-4
by Expert & Label by Expert
[E==) @B solver Code (censrateaby cor-s)
=) Solver Code s 20 @ Desirability (Libeleaty
for Problem p Solver Code ' with Desirabiliy Label

(c) Auto-Testing

A

[

(b) Learning

Pre-trained LLM

Data for Formulation

@@ (p. f)

Problem with 5-Element
Labeled by Expert

(@
peoblem with
S Flement Generated by GPT-4
& Desrabity Labeled by Expert

L d)

Formulation:
Learning to
Define

Problem |

e

— > SFT <~

LLMger

— KTO «——

Data for Solving

EOFR (r.5)
{ﬁ@u\)

Problem/5-Element with Code
Labeled by Expert

{@@ﬁg‘?w,w/)
BEFE (£50d)

Problem/s-Element with
Solver Code Generated by GPT-4

Alignment & Desirability Labeled by Expert
Solving:
LLM .
FINAR Learning to

Self-correctiol

Generate Code

LLMeiar
(Defining)

LLMgiya,
(Solving)

|
N - T e 7 [e= j
| FE Code | Solver 5 Logs T il Results

FINAL optimal Solution




Solving Accuracy (SA)

Solving Accuracy (SA)

100%

w0 ILTes9.00 - GPT-do Z100% oo, %0 EEE LLMOPT wio S-Element
800, TR BN Quenl.S with Only SFT [ U2 -1 EEE LIMOPT
7 80% TLIRTLT%
60% 54.1% £
3 5 6%
46.0% 43.5% 3 60%
40% 34.0% M0%I30% 347 < 40%
27.3% &
20% = 20%
0 U}D )0,
0% NL4Qpl Mamo E. Mamo C. IndustryOR NLP4LP Cog’npl:xOR 0% NL40pt  Mamo E. Ma!no C. IndustryOR NLP4LP ComplexOR
(a) Comparison between GPT-40 and Qwen1.5-14B with only SFT. (b) Ablation of five-element.
. = 100%
100%1 - gry, iine W LLMOPT wio KTO 100N B ]
= BN LLMOPT s18% L o
80% 7% >, 80%
68.0% - 9 68.0%
65.0% £4.9% £ o
60% st g 6%
300, 46.0% 3 46.0%
40% T 5, 40% l 530
=
20% = 20% WEE LLMOPT w/o KTO & 5-Element
2 B LLMOPT
0% 0%

NL4Opt

Mamo E. Mamo C. IndustryOR NLPALP ComplexOR
(c) Ablation of KTO.

NL4Opt  Mamo E. Mamo C. IndustryOR NLP4LP ComplexOR
(d) Ablation of both five-element and KTO
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ST E

m OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization
Modeling, 2025

Step1: Reverse Data Generation

E Quality Filtering rfv&
=5 =

Benchmark Generated LP Files

I
} Step2: Forward Modeling and Evaluation
I

I

I

I

I

I

} (Hard LP Files)

I

I

I

I

I

I

I

I

I

L\
1 Samping EI

) o T
9 |

Reiecti

Reject

g &

Natural Language AutoFormulator |
| Description 1
L ________1 e iy Sy Sy | Sy, 1

Backtranslation
Pipeline
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Types ‘ Models l Accuracy(pass@1) IX‘\‘;(‘:’ IX{j‘G"
MAMO  MAMO  OptMATH
‘ \NL“‘OPT EasyLP ComplexLP  Bench ‘ ‘
GPT-3.5-turbo 780%  79.3% 33.2% 15.0% | 514% | 61.0%
Baseline GPT-4 80.0%  87.3% 19.3% 16.6% | 60.6% | 70.9%
Deepseck-V3 95.9%  88.3% 51.1% 32.6% | 67.0% | 75.3%
Chain-of-Experts 64.2%" - - - - -
Fromptibased ‘ Optimus ’ 78.8%" - - - - -
Fine-tunin ORLM-LLaMA-3-8B 85.7%  82.3%" 37.4%! 0.0% 514% | 64.8%
® | OptMATH-Qwen2.5-7B | 94.7%  86.5% 51.2% 244% | 64.2% | 73.5%
OptMATH-Qwen2.5-32B | 95.9%  89.9%  54.1% 34.7% | 68.7% | 76.5%

+: Results reported in their original papers.

100
Baseline Model
== Finetuned Model e e
80 73.6% 76.0%
g %
59.9%
g e 148.0%
£ 493%
3
<
o 40
2 1232% con 0%
23.3% 4n0%
20
o
0.58 1.58 38 78 148
Model Size

19.6%
76.9%

67.3%

328

Accuracy (%)

04

06 [
Proportion
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EFIMRFIRER A

m LLM for Large-Scale Optimization Model Auto-Formulation: A Lightweight
Few-Shot Learning Approach, 2025

&
oﬂ/| o T &

retrieve context 1 |
Reference I from relevant CSV Files
documents documents Problem Classification Agent

& Thnughl _ 2. Action
oot -EE Ko
Query documents by Context Ref-Data

User query _'i]':’i vocior comparing TS 4. Observations| 3. Action Input

¥
vg Problem Type
v
Few Shot Example Generation Agent
Retrieve »
Took —— @ Sub-Ref
Few-shot Prompts.
w\lh Relevant Queries and Labels
Model Generation Agent |
1. Thought 2. Action
@ xm,m
Tools ‘*
4 (lhurvnlmu 3. Action Input
Response v
LP Formatted

Modeling Output |~ g

Augmented
query eg

Answer the above,
based on:
<chunk 1>,
<chunk 2>,
<chunk 3>,
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EFINBEIRERTTIE

Table 1 Resource Utilization Comparison Table9  Accuracy comparison across different methods

FineTuning  Utilize GPU  Dataset Size CSV File Import Method NLAOPT IndustryOR
‘ORLM-Mistral-7B 84.4%" 27.0%"
v v 30,000 x
ORLM-Deepscek-Math-7B-Buse ~ 86.5%" 33.0%"
/' V(2*AS00GPUs) 29,000 x . .
ORLM-LLaMA-3-8B 8579 38.00%
) v Y (B*AI0GPUs) 29,828 x LLMOPT-Quenl 5-14B 940%"  46.0%"
Ours x X 70 v Ours 91.0% 38.0%

Table 10  Accuracy comparison of LEAN-LLM-OPT , RAG-Only, and Standard GPT-4 on Singapore Airlines SBLP

LEAN-LLM-OPT RAG-Only Standard GPT-4

Overall SBLP Accuracy 78.4% 0% 0%

Equation-Level Accuracy 82.3% 23.1% 9.4%
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HEML

m Evolution of Heuristics: Towards Efficient Automatic Algorithm Design using

Large Language Model, 2024

Performance (objective)

diff = bis
Heuristic In&Qut 7
El hybrid term
Input: item, bi
“Pnk,lne'::ﬂlu":‘ﬁm (bins - item) / bins *
o ol e st hem et
Output:scores

EI, exponent term
exp(-(bins - item)**2)

= scores: scores for
assigning item

E2, combination of ufilization
and penalty

- item

where(diff > item * 3), (1 - diff / bins) *
sqrt(diff + 3) + 0.8, (1 - diff / bins)
SQUE(diff + 0.5) + 0.3)

M2, hybrid adjustment

M3, new parameter
settings

chrt(item) / (bins - item) —
(bins - item) < 0.4 * bins.max()

EL deviation from average
abs(bins - np.mean(bins))

E2, utilization of cubic root
cbri(item) / (bins - item)

ic(item, bins)

max(bins)

ins - max_bin) **2 / tem
Mi: penalty for large bins

(bins - tem) < 0.2*bins.max() | /' gero

scores = comb1 + comb2 + comb3.
scores|bins>item] = -score[bins>item]
scores| 1:] -= score[:-1]

retum scores.

—

#Human (Best Fit) #EoH
The heurstic incorporates 2 welghted averago of the uilization
ratio, dynamic adjustment, and an exponentially decaying factor
with different parameter settings to minimize the number of used
bins

square root term
1-difffbins # uilization term
comb = ulti * sqrt_# combination of utilization and square root
adjust = where(diff > (jtem * 3), comb + 08, comb + 0.3)
# hybrid adjustment term to penalize large bins.
hybrid_exp = bins / ((exp + 0.7) *exp)
# hybrid score based on exponent term
scores = hybrid_exp + adjust
# sum of hybrid score and adjustment

return scores

10
Number of generations
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HEML

4

m LR

Table 1. Online bin packing results. Comparison of the fraction Table 3. Flow shop scheduling problem results. Comparison of
of excess bins to lower bound (lower is better) for various bin the average relative makespan (%) to the baseline (lower is better)
packing heuristics on Weibull instances. on Taillard i
1K.CI00 Sk.CI00 10k.CI00 1k.C500 Sk.C500 10k.C500 n20ml0 n20m20 n50mI0 nSOm20 nl100mI0 nl00m20
First Fit 5320 440%  444%  497%  421%  428% GUPTA 242 2179 2001 278 1503 2100
Best Fit 487%  408%  409%  450%  391%  3.95% CDs 1287 1035 1272 1503 9.36 13.55
J 4. 1 47 54 2,07

FunSearch ~ 378%  0.80%  033%  675%  147%  0.74% NEH 05 3003 s 0 358

NEHFF 415 272 362 510 188 373
EoH (ours) 224%  080%  061%  213%  0.78%  0.61%

PESPNet 1478 1469 1195 1695 821 16.47

PFSPNetNEH 404 296 348 505 172 356

Table 2. Traveling salesman problem results. Comparison of the EoH(ours) 030 010 019  0.60 0.14 041

relative distance (%) to the best-known solutions (lower is better)
for various routing heuristics on a subset of TSPLib instances.

rd100  pr124  bierl27  kroA150  ul59  kroB200

Table 4. Comparison of different EoH variants on thoughts, codes,
and prompt strategies in ablation study.

NI 1991 1550 2321 1817 2359 2410 Ny
Fl 938 443 804 854 1115 7.54 Thoughts  Codes _ Prompt Strategics
Or-Tools 001 055 066 0.02 175 257 EoC x v El

AM 341 368 591 378 755 101 EoH-el v v E1

POMO 001 060 1372 0.70 0.95 1.58 EoH-e2 v v E1,E2

LEHD 001 LIl 476 140 LI3 064 EoH v v/ E1,E2,M1,M2,M3

EoH(Ours) ~ 0.01  0.00 0.42 0.00 0.00 020
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EERA

m Llamea: A Large Language Model Evolutionary Algorithm for Automatically
Generating Metaheuristics, 2024

LLM Driven Optimization loop

Initiation
Synthesize Load
— p 2
No Algorithm " Algorithm ~4Sitee el
Problem @ *
Specification No et
v
Prompt strategies
X Stop criteria Eltism ~_Emor. Evaluate using
Initialize - met? - information <= =
Detailed feedback |OH 7
s & “Experimenter
Specification Y — -~
) Anytime A
Refine or » Session . performance
Yes Redesign Hi statistics
istory

Stop
Return best algorithm so far
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EERA

4

m LR

Convergence on BBOB 5D problems

0.7
—— LLaMEA-1,1 GPT4 07 Convergence on BBOB 5D problems
11 LLSHERL 5 GRTA : —— LLOMEA-1+1 GPT4
06 ~— LLaMEA-1,1 GPT3.5 —— EoH GPT4
 LLaMEA-1+1 GPT3.S — RS GPT4
== LLaMEA-1,1 GPT4o 06
- LLaMEA-1+1 GPTdo
0.5
g
804
< 8
s g
H 5
E @
E03
/ 4
0.2
01 01
0.0 X
o 20 a0 60 80 100 20 a0 60 80
LLM prompts LLM prompts
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SHURLE

m LLMs for Cold-Start Cutting Plane Separator Configuration, 2025

repeat K times

Problem description E’

|

Text summary

o)
P — Config ]
Lm |- clunter » contig |
/ﬁ ’ Configs
Cutting Plane [ Config ]
description
=
2
Q ) 4 )
Configuration K cluster Final
LLM inputs medoids Configuration

pool
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m From Words to Routes: Applying Large Language Models to Vehicle Routing,

2024

Error collector

ao

Problem
No . No
@'1 ask descriptio Python % Execution Unit % Verification
erption e [ G rewis B e ) e o
— Yo o
Environment /> /> o=}
B e
= R LLM #1 Excutor Successfully cation  LLM #3 Exccutor Pass Solution
executed? collector verification?
@ Constraints
M #2
Y .
Problem 1 i
I I = : Perform text-to-Python code generation
il i " |
Fail in exceution Python code I ! Problem ” e
1 i
Execution results . i
@ I I @ Constraints I i ‘Extract constraints from the problem
Proble Iy i
Error Froblem | Verification \= Exccution results | : LLM #2
Nec, I I collector =|
S Fail in verification Executionresults | h
1 I i Generate unit tests given problem, constraints and execution
1
Veriication anlysis | | HE L
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77 SR IE

m Solver-Informed RL: Grounding Large Language Models for Authentic
Optimization Modeling, 2025

Training data

0+0

(Question, answer)

—_
— B -
Questions Extended Q
Questions

Multiple LLM roles to obtain the answers

Refine and regenerate

Filtering

Self-consistency

o
WS — — =]

Mathematical Code Solver
model

E
d

Lp file

Refine and regenerate

27 /40



77 SR IE

m OR-LLM-Agent: Automating Modeling and Solving of Operations Research
Optimization Problems with Reasoning LLM, 2025

Codeagent - — — — — . __ -

‘A candy factory uses raw materials A, B, and C 10 produce three different grades of candy,

~
namely J, K, and L. The perceniages of raw materials A, B, and C in cach grade of candy, \
the raw material costs, the monthly usage limits for ach raw material, as well as the | & Auto-run and ]
" for cach candy grade, are given in Table 1. | 1 :
ny kilograms of cach candy grade should be produced monthly 10 | LLM repair 1
profit. Establish  lincar programming mathematical model for this problem. | 3 |
Table 1: Raw Material and Candy Production Data — 1
T K LRt k) | Moty Vnags Lot () ¥ K
w0 a0 o I !
» i 1
o[ om ou om [ '
22 \ /
=
Linear
programming
max zx ¥y,
[Hai=h (=12imn
[x,=0 s=120m
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77 SR IE

m OptimAl: Optimization from Natural Language using LLM-Powered Al Agents,
2025

A salesperson needs to visit each of these 51 cities
exactly once and then return to the starting point.
Figure out the shortest possible route!

Formulator
- "Decision Variables": {“x_ij" "d_{ij}"; ...},
Fﬂfm?'”‘Ed math problem includes: "Objective Function": {"Description"; "Expression"; ...},
k Defxsn_)n vanab_les "Constraints"; {"]1_Outgoing_Censtraint"; ...},
* Objective function "Problem Type'": "Mixed-Integer Linear Programming (MILP)"

* Constraints
* Problem domain
* Expected UmP”t format Use Gurobi with Use PyConcorde Use OR-Tools for
MTZ formulation as the Solver Heuristic Methods)
T

Planner Planner Planner

1
M
. Plan 3| [Aer sotver():
Reflection Plan 2 - from concorde.tsp import TSPSolver

import numpy as np
Code Critic cities = np.array([...])

Running
Environment

try:
tsp_solver = TSPSolver.from data(xs, ys, norm)
solution = tsp_solver.solve()

return | optimal_sequence, minimized total distance}

Result 'minimized_total distance': 426.0

Total Time to solve TSP: 0.07
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AR

m LLMs Can Schedule, 2024

Optimize schedule for 3 Jobs across 3 Machines to minimize makespan.
Each job involves a series of Operations needing specific machines
and times. Operations are processed in order, without
interruption, on a single Machine at a time.

Problem:

Job 0 consists of the following Operations:
Operation 0 on Machine 0 duration 105 mins.
Operation 1 on Machine 1 duration 29 mins.
Operation 2 on Machine 2 duration 213 mins.

Job 1 consists of the following Operations:
Operation 0 on Machine 2 duration 193 mins.
Operation 1 on Machine 1 duration 18 mins.
Operation 2 on Machine 0 duration 213 mins.

Job 2 consists of the following Operations:
Operation O on Machine 0 duration 78 mins.
Operation 1 on Machine 2 duration 74 mins.
Operation 2 on Machine 1 duration 221 mins.

Average Gap from Optimal Solution

Comparison of Different Methods
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m Towards Next-Generation Urban Decision Support Systems through Ai-Powered
Construction of Scientific Ontology Using Large Language Models, 2024

Use case: Shipment from Nashville to New Orleans ‘Graph Representation Ontology Representation

Nashville on. FrOpETiESs Of

Memphis

2
H
H
Digitized through LLM-powered Approach

Jackson
) bestination
-
Intermodal  Rail Properties of
Exchange
“ Orleans

New
Orleans

Network Optimization

1. Network Traverse
Identify Each Possible Combinations

£ of Routes and Modes
Multi-Criteria Decision Analysis lookupTsble | B
For Each Possible | O —_—

Reduce GHG Emission, Operation Cast, Combination with Nashville  Atlanta  New Orleans
Fuel Consumption, and Shipment Tir Multiple Decision

el Consumption, and Shipment Time i

> — Nashille Birmingham jackson New Orleans
4. Optimal Routes & Modes Identification .

Origin Node
Location Available
Shipment Mode
Resource Capacity

Rail Edge:  Geometry
Distance Topology
Emission Travel Time.

Fuel Consumption _Cost

Intermediate Node:
Location Intermodal
Available Mode  EXchange
Capacity Constraint  Cost

Road Edge: Cost Route
Distance Travel Time
Emission  Congestion Index
Fuel Consumption  Topology

S — e ————

Location
shipment
Capacity Constraint.

Delivery
Time

2. Decision Support
Variables Definition
Aggregation of all
edges and nodes

For Each Combination:
* Total GHG Emission
‘Total shipment Time
Total Fuel Consumption
Total Operation Cost

# Data Access
through APIs

Data Sources

«FAF

*Real-time
Demand Data

«FTOT
«0SM

~FAF

~FTOT  « Traffic
“OSM  sensors
*HIFLD

<FAF

3. Data & Model
Integration
URI

Pre-calculated
=18 patainto
“la vatabase

Real-time
simulation as.
Web Services
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m Robot-Enabled Construction Assembly with Automated Sequence Planning based
on ChatGPT: RoboGPT, 2023

ROS ROS-Unity ChatGPTAPI
S Cone e LLM |
Semantic; Bowding Box 3
System ., Eotmation
5
e
8
&
3
2
ke £%
cQ
1
! Grpper | NP . g
: :-——| Motion-Object Matching b3 §
Red Woid | Prompt.Real e (]
arget Location 1 Transformation [ Leon
S ——
55
53
Pose Synchronization 22
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EMaF

m Integrating Genetic Algorithms and Language Models for Enhanced Enzyme
Design, 2025

(A)

Large Language Model

-2
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m LLM-OptiRA: LLM-Driven Optimization of Resource Allocation for Non-Convex

Problems in Wireless Communications, 2025

Scenaric
Multi-cell TOMA {

Non-Convex Components

rate. (......) The number of beams

Lagrangian
. Relaxation

SDR

(55? %

| User-Beam Allocation for

SCA QT

o— \
=0 &> communication system, the goal is to | |
s mnsin | e e itcion b e |
i ximize system sum | |--
Sl 1 “ | Transfer Convex Method
|
|

LLM-OptiRA Framework

min— BZZZt log,(1+75,) | Convex Pr l

“min fi,(x)
st g/ (x)<0,
' (x)=0.

— Objective functior
Interference-Optimized ||" Maximize system sum rate:
in Cellular Networks [ iAssociated variable:

@ &

)

{min £ (x) l

Constraints m

!
|
i Bl 7

; fi . ari: . a <0] Theoretical
| e coon i o) | o< |
| Resource Allocation 1! continuous ” \( : ()=

; % @Q e “ontinuous fime slots fraction f,,,” P } Opimisation

A I\ integer  carrieraliocation e, .../ Formulation

| GEO Capacity Optimization) I's e

F 8 T e ) from [ Coe Geperas

i % Description  Model Construction'—,”| Non-Convex to Convex Ervor Corestion
! F~y % -

|::> Result Validation )[ Output

Transmit Power

3

b
©)

Error Correction Loop(ECL)

(Ma R,y 5141Mbps
| Optimized Variables:
! | Power Allocat

Antenna Ports
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$25,000

$20,000

$15,000

$10,000

$5,000

TOTAL ACCOUNT VALUE

$0 T T T T T T 1
Oct 18 ©6:00  Oct 19 22:26  Oct 21 14:51  Oct 23 07:17  Oct 24 23:43 Oct 26 16:09  Oct 28 08:35 oct 30 01:01

36 /40


https://nof1.ai/

HHENF

m https://agents4science.stanford.edu/

Agents4Science 2025 Home  Callfor Papers  Schedule  Accepted Papers  Explore Submissions  FAQ

Open Conference of Al Agents for
Science 2025

The 1st open conference where Al serves as both primary authors
and reviewers of research papers

Exploring the future of Al-d E rent Al-authored

@ b4

4 (¢] ]

Paper submission deadline Paper decision released Virtual Conference
September 15, 2025 AOE October 5, 2025 AOE October 22, 2025

Eventhas passed Ew - E
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https://agents4science.stanford.edu/
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g

m https://github.com/xianchaoxiu/LLM40PT

O Steps in the pipeline of optimization model

Problem
Identification

and Definition O Possible Al solutions for each step

Parameter
Generation

O Possible algorithms for each Al solution

———— Sequential Relation
— — — - Subordinate Relation

Model
Formulation

Smart Predict-then- ’
Optimize o= =

Integrating Prediction
and Optimizati

Continuous
Optimization Algorithm

Model
Optimization

Interpretation
and Validation
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https://github.com/xianchaoxiu/LLM4OPT

m A Systematic Survey on Large Language Models for Algorithm Design, 2024
m A Survey on Large Language Models for Code Generation, 2024

m Large Language Models for Mathematical Reasoning: Progresses and Challenges,
2024

m Large Language Models for Combinatorial Optimization: A Systematic Review,
2025

m Large Language Models in Operations Research: Methods, Applications, and
Challenges, 2025

m A Survey of Optimization Modeling Meets LLMs: Progress and Future
Directions, 2025
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Q& A
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