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Q learning algorithm

— Initialize Q-table

'

Choose an Action

Multiple iterations till ¢
the model achieves :
termination state Perform Action

Measure Reward

+

e Update Q-Table
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m https:/virtual-labs.github.io/exp-g-learning-iiith /simulation.html

Q[(1,1),L] < 0.000 + 0.100 * ( -0.100 + 0.900 * 0.000 - ( 0.000)) = -0.010

Previous Iteration Present Iteration

L:0.000 L:0.000 L:0.000 L:0.000

U :0.000 U:0.000 U :0.000 U:0.000

R:0.000 R:0.000 R:0.000 R:0.000

D:0.000 ¢ D : 0,000 D:0.000

L:0.000 L:-0.010

U:0.000 U:0.000

R:0.000 R:0.000

D:0.000 « D:0.000

L:-0.020 [ L:-0.020
U :-0.020 U:0.000 U:0.000 U:-0.020 U:-0010 U:0.000
R:-0.027 R:0.000 R:0.000 R:-0.034 R:0.000 R:0.000
D:-0020 4 D:0.000 4 D:0.000 & D:-0020 D:0.000 D:0.000
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Agent
actions
states| a0 ay ay
So Q(s0,a0) |Q(s0,a1) |Q(s0,a2)| =«
S Q(s1,a0) |Q(s1,a1) |Q(s1,a2)| o«

Reward r

Take action a

Q(s2,a9)

Q(s2,a1)|Q(s2,a2)| + + +

Observe state s < s/

Environment
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Q-Learning
State ot
Q'Table Lo Q-value
Action input

Deep-Q-Learning

output Q-value of Action 1

output
State input Q-value o:I‘Acm 2

FOUPIL L Q-value of Action N
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Update Policy Sample action

Terminated episode -_
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m Survey on Large Language Model-Enhanced Reinforcement Learning: Concept,
Taxonomy, and Methods, 2025
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: T Specification : Model Simulator Policy Interpreter :
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Push the ketchup to the blue cube J { Push the blue cube to the tabasco }

30/44


https://robotics-transformer2.github.io/

KiERIRLF S

m LLM EARENRITE, it ERBUTEERIFHIRMES, ShiSEZ LR
R, EER W%TE*@

(i) Implicit Reward Model | : (ii) Explicit Reward Model

Directly Prompting Alignment Scoring P LLM Function
i |c1ass Grigenv: Generator

i
g] 3 3 def calc obs(self): @) :
Prompting ) self. . ) @B >
H Similarity ~ Language | self.c - A
Allgnmant Score 3 ' f
i | Self-rafine Loop
|

Designed - s P self.lond = -.. v
Reward " b . ! £ T
= coal ] teemeeeee Evaluation

def colc_sowocdlobi, 4]

v

31/44



KiERIRLF S

m LLM {EARENRITH

AT EZ

EF ASRIRAIZME LLM B ATIFH, EMERES InstructGPT, ChatGPT
BRI LLM BERESHNFmHRE Anthropic Constitutional Al
BTN ITTRIIIED gt 5 BiMEIE N ER—EiE MARE. REAES

RIREERS BRAEE LLM BIEE AR S HSER I Explicit Reward Model

32/44



KiER @ FES
m LLM fEARKE

e

\

(i) Action-making
o ' Nexi:cu‘nn
(| '
T : / Task-Specilic Model ™.
' t
[ Pretrained LLM ] : i’relms‘ned LLM as General Scoff "}
I i [ Tralectory | [Goa\/lnslrucliTJ/
e (i) Action-guiding \
Action Candidates Expert Actions

Env & Trajectory |
1

History !

H

Critic Network
N

Updale Policy
D :
'\\/.J\’ ! a = argmax(Q
+Alog pLin)
Action

'
'
'
Candidates |
'
'
'

33/44



KiERIRLF S

m LLM {EAREZE (Decision Maker)

\moem ERERSER

SEH LLM F=H{RIASR/fREE, BRNER

IEENE + RMERE oo oo e s EBEESSEISSES/MBEARR
N EREMAFGIER, BEFHESEHRER . - ;
FHERER EETI T EEEEEIE. WHRE

ReAct + TRER 2o 20 FWSHENAEBIARS sanmstamnsTRm0Es

e = FEAMFEPRESEINE/FER, BN ooy .
EEREE/FRITER {E/é@?ﬁ’lﬁﬂ&ﬁii%ﬁﬁ%@?ﬂ% ESKERNS DB

34/44



RIEBISRIL

m https://say-can.github.io/

Instruction Relevance with LLMs Combined Skill Affordances with Value Functions

£ Find an apple 06
4 would you pick up J| How would you bring = 7 RTHeE 06

R e ok jalepenaiehipsand  llime something G thav - b
can to the far counter? i 1 B oo please ” 30 Find a sponge 06

How would you put
an apple on the 4 Pick up the apple 0.2
table? 30 Pick up the coke 02
How would you restock
A the rice chips.on th Throw away the you bring.
Go/to the wasran N (o Cointer Jalapeno chigs 2 5 Place the apple 0.1
-30 Place the coke 0.1
Go to the table 0.8 F Value
nction:
=20 Go to the counter 0.8 7/ u Ct ons

How would you pick vt (T con
up the coke can and [l How would you brifig! wwould you put the [l move thE Coke can to
move it 1 the trash can | me a soda can down trash can

I would: 1. Find an apple, 2.

How would ydllplck T [
gty Hoix.would you bring move thesponge-to =0— UM VF

up the apple dndis
e I co the trash can ] me something 10 eat. [l away the water bowie I the table
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Human: | spilled
my coke, can you

bring me
something to clean
it up?
find a sponge pick up the sponge bring it to you done
Robot: | would
1. Find a sponge 1.00 1.00 1.00 1.00
. pong go to the table put down the sponge put down the sponge go to the table
2. Pick up the
08 021 047 0.01
sponge ) N ;
A . find a coke can bring it to you go to the table find a coke can
3. Bring it to you
08 0104 021 0.00
4. Done )
go to the trash can go to the table go to the trash can find a sponge
0105 0.00 0.00 0.00
Language x Affordance find a water bottle go to the trash can done go to the trash can
Combined Score
001 0.00 0.00 0.00
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ﬁgﬁf Real-world Results: Unitree Go2

41/ 44


https://navila-bot.github.io/

VLA

m https://openvla.github.io/

42/ 44


https://openvla.github.io/

BI85

m https://github.com/valeoai/v-max

Expert RL Policy
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m A Survey of Reinforcement Learning for Large Reasoning Models, 2025
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