
第五章 复合优化算法

修贤超

https://xianchaoxiu.github.io

https://xianchaoxiu.github.io

目录

5.1 近似点梯度法

5.2 Nesterov 加速算法

5.3 分块坐标下降法

5.4 交替方向乘子法

1 / 63

邻近算子

考虑如下复合优化问题

min
x∈Rn

ψ(x) = f(x) + h(x)

f(x) 为可微函数 (可能非凸)
h(x) 可能为不可微函数

定义 对于一个凸函数 h, 定义邻近算子为

proxh(x) = arg min
u

{
h(u) + 1

2
∥u− x∥2

2

}
定理 如果 h 为闭凸函数, 则对任意 x 有 proxh(x) 存在且唯一

2 / 63

邻近算子

定理 若 h 是适当的闭凸函数, 则
u = proxh(x) ⇔ x− u ∈ ∂h(u)

证明 若 u = proxh(x), 则由最优性条件得 0 ∈ ∂h(u) + (u− x), 因此
x− u ∈ ∂h(u). 反之, 若 x− u ∈ ∂h(u) 则由次梯度的定义可得到

h(v) ⩾ h(u) + (x− u)⊤(v − u), ∀v ∈ dom h

两边同时加 1
2∥v − x∥

2, 即有

h(v) + 1
2
∥v − x∥2 ⩾ h(u) + (x− u)⊤(v − u) + 1

2
∥(v − u)− (x− u)∥2

⩾ h(u) + 1
2
∥u− x∥2, ∀v ∈ dom h

根据定义可得 u = proxh(x)
3 / 63

例

给定 ℓ1 范数 h(x) = t∥x∥1, 则 proxth(x) = sign(x) max{|x| − t, 0}

证明 邻近算子 u = proxth(x) 的最优性条件为

x− u ∈ t∂∥u∥1 =


{t}, u > 0
[−t, t], u = 0
{−t}, u < 0

⇓

u =


x− t, x > t

x+ t, x < −t
0, x ∈ [−t, t]

4 / 63

例

给定 ℓ2 范数 h(x) = t∥x∥2, 则 proxth(x) =
{

(1− t
∥x∥2

)x, ∥x∥2 ⩾ t

0, 其他

证明 邻近算子 u = proxth(x) 的最优性条件为

x− u ∈ t∂∥u∥2 =

{
tu

∥u∥2
}, u ̸= 0

{w : ∥w∥2 ⩽ t}, u = 0

⇓

u =

x−
tx

∥x∥2
, ∥x∥2 > t

0, ∥x∥2 ⩽ t

5 / 63

例

邻近算子的计算规则

变量的常数倍放缩以及平移 (λ ̸= 0)

h(x) = g(λx+ a), proxh(x) = 1
λ

(
proxλ2g(λx+ a)− a

)
函数（及变量）的常数倍放缩 (λ > 0)

h(x) = λg
(
x

λ

)
, proxh(x) = λproxλ−1g

(
x

λ

)
加上线性函数

h(x) = g(x) + a⊤x, proxh(x) = proxg(x− a)

6 / 63

例

加上二次项 (u > 0)

h(x) = g(x) + u

2
∥x− a∥2

2, proxh(x) = proxθg(θx+ (1− θ)a)

其中 θ = 1
1+u

向量函数

h

([
x
y

])
= φ1(x) + φ2(y), proxh

([
x
y

])
=
[

proxφ1(x)
proxφ2(y)

]

7 / 63

例

设 C 为闭凸集, 则示性函数 IC 的邻近算子为点 x 到 C 的投影 PC(x)

proxIC
(x) = arg min

u

{
IC(u) + 1

2
∥u− x∥2

}
= arg min

u∈C
∥u− x∥2

= PC(x)

几何意义
u = PC(x) ⇔ (x− u)⊤(z − u) ⩽ 0, ∀z ∈ C

8 / 63

近似点梯度法

考虑复合优化问题
min
x∈Rn

ψ(x) = f(x) + h(x)

对于光滑部分 f 做梯度下降, 对于非光滑部分 h 使用邻近算子

==========

算法 近似点梯度法

1 给定函数 f(x), h(x), 初始点 x0

2 while 未达到收敛准则 do
3 xk+1 = proxtkh(xk − tk∇f(xk))
4 end while

9 / 63

对近似点梯度法的理解

把迭代公式展开
xk+1 = proxtkh(xk − tk∇f(xk))

⇓

xk+1 = arg min
u

{
h(u) + 1

2tk
∥u− xk + tk∇f(xk)∥2

}
= arg min

u

{
h(u) + f(xk) +∇f(xk)⊤(u− xk) + 1

2tk
∥u− xk∥2

}
根据邻近算子与次梯度的关系, 可改写为

xk+1 = xk − tk∇f(xk)− tkgk, gk ∈ ∂h(xk+1)

对光滑部分做显式的梯度下降, 对非光滑部分做隐式的梯度下降

10 / 63

步长选取

当 f 为梯度 L-利普希茨连续函数时, 可取固定步长 tk = t ⩽ 1
L

当 L 未知时可使用线搜索准则

f(xk+1) ⩽ f(xk) +∇f(xk)⊤(xk+1 − xk) + 1
2tk
∥xk+1 − xk∥2

BB 步长

可构造如下适用于近似点梯度法的非单调线搜索准则

ψ(xk+1) ≤ Ck − c1

2tk
∥xk+1 − xk∥2

11 / 63

应用举例: LASSO 问题

考虑用近似点梯度法求解 LASSO 问题

min
x

µ∥x∥1 + 1
2
∥Ax− b∥2

令 f(x) = 1
2∥Ax− b∥

2, h(x) = µ∥x∥1, 则

∇f(x) = A⊤(Ax− b)
proxtkh(x) = sign(x) max {|x| − tkµ, 0}

相应的迭代格式为

yk = xk − tkA⊤(Axk − b)
xk+1 = sign(yk) max{|yk| − tkµ, 0}

即第一步做梯度下降, 第二步做收缩
12 / 63

应用举例: LASSO 问题

使用 BB 步长加速收敛

0 50 100 150 200 250 300 350 400
10

-10

10
-5

10
0

10
5

10
10

13 / 63

应用举例: 低秩矩阵恢复

考虑低秩矩阵恢复模型

min
X∈Rm×n

µ∥X∥∗ + 1
2
∑

(i,j)∈Ω
(Xij −Mij)2

令
f(X) = 1

2
∑

(i,j)∈Ω
(Xij −Mij)2 , h(X) = µ∥X∥∗

定义矩阵

Pij =
{

1, (i, j) ∈ Ω
0, 其他

则
f(X) = 1

2
∥P ⊙ (X −M)∥2

F

14 / 63

应用举例: 低秩矩阵恢复

进一步可以得到

∇f(X) = P ⊙ (X −M)
proxtkh(X) = UDiag(max{|d| − tkµ, 0})V ⊤

得到近似点梯度法的迭代格式

Y k = Xk − tkP ⊙ (Xk −M)
Xk+1 = proxtkh(Y k)

15 / 63

收敛性分析

假设 为了保证近似点梯度算法的收敛性

f 在 Rn 上是凸的; ∇f 为 L-利普希茨连续, 即

∥∇f(x)−∇f(y)∥ ⩽ L∥x− y∥, ∀x, y

h 是适当的闭凸函数

函数 ψ(x) = f(x) + h(x) 的最小值 ψ∗ 是有限的, 并且在点 x∗ 处取到

定理 在假设下, 取定步长为 tk = t ∈ (0, 1
L

], 设 {xk} 为迭代产生序列, 则

ψ(xk)− ψ∗ ⩽ 1
2kt
∥x0 − x∗∥2

16 / 63

目录

5.1 近似点梯度法

5.2 Nesterov 加速算法

5.3 分块坐标下降法

5.4 交替方向乘子法

17 / 63

典型问题形式

考虑如下复合优化问题

min
x∈Rn

ψ(x) = f(x) + h(x)

f(x) 是连续可微的凸函数, 且梯度是利普西茨连续的

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

h(x) 是适当的闭凸函数, 且邻近算子

proxh(x) = arg min
u∈domh

{h(u) + 1
2
∥x− u∥2}

步长取常数 tk = 1/L 时, 近似点梯度法的收敛速度为 O(1/k)

18 / 63

Nesterov 加速算法简史

Nesterov 在 1983、1988、2005 提出了三种改进的一阶算法, 收敛速度 O
(

1
k2

)
Beck 和 Teboulle 在 2008 年提出了 FISTA 算法, 第一步沿着前两步的计算方
向计算一个新点, 第二步在该新点处做一步近似点梯度迭代

xk−2 xk−1 yk

xk = proxtkh
(yk − tk∇f(yk))

19 / 63

FISTA 算法

算法 近似点梯度法

1 给定函数 f(x), h(x), 初始点 x0

2 while 未达到收敛准则 do
3 xk+1 = proxtkh(xk − tk∇f(xk))
4 end while

==========

算法 7.2 FISTA 算法
1 输入x0 = x−1 ∈ Rn, k ← 1
2 while 未达到收敛准则 do
3 计算 yk = xk−1 + k−2

k+1(xk−1 − xk−2)
4 选取 tk = t ∈ (0, 1/L], 计算 xk = proxtkh(yk − tk∇f(yk))
5 k ← k + 1
6 end while

20 / 63

FISTA 的等价形式

算法 FISTA 算法的等价变形
1 输入v0 = x0 ∈ Rn, k ← 1
2 while 未达到收敛准则 do
3 计算 yk = (1− γk)xk−1 + γkvk−1

4 选取 tk, 计算 xk = proxtkh(yk − tk∇f(yk))
5 计算 vk = xk−1 + 1

γk
(xk − xk−1)

6 k ← k + 1
7 end while

21 / 63

第二类 Nesterov 加速算法

第二类 Nesterov 加速算法
zk = (1− γk)xk−1 + γky

k−1

yk = prox(tk/γk)h

(
yk−1 − tk

γk

∇f(zk)
)

xk = (1− γk)xk−1 + γky
k

三个序列 {xk}, {yk} 和 {zk} 都可以保证在定义域内

yk−1 xk−1zk

yk = prox(tk/γk)h
(yk−1 − (tk/γk)∇f(zk))

xk

22 / 63

第三类 Nesterov 加速算法

第三类 Nesterov 加速算法

zk = (1− γk)xk−1 + γky
k−1

yk = prox(tk

∑k

i=1 1/γi)h

(
−tk

k∑
i=1

1
γi

∇f(zi)
)

xk = (1− γk)xk−1 + γky
k

计算 yk 时需要利用全部已有的 {∇f(zi)}, i = 1, 2, · · · , k

取 γk = 2
k+1 , tk = 1

L
时, 也有 O

(
1

k2

)
的收敛速度

23 / 63

针对非凸问题的 Nesterov 加速算法

考虑 f(x) 是非凸函数, 但可微且梯度是利普希茨连续

非凸复合优化问题的加速梯度法框架

zk = γky
k−1 + (1− γk)xk−1

yk = proxλkh(yk−1 − λk∇f(zk))
xk = proxtkh(zk − tk∇f(zk))

当 λk 和 tk 取特定值时, 它等价于第二类 Nesterov 加速算法

当 f 为凸函数, 收敛速度为 O
(

1
k2

)
当 f 为非凸函数, 收敛速度为 O

(
1
k

)

24 / 63

应用举例: LASSO 问题求解

考虑 LASSO 问题
min

x

1
2
∥Ax− b∥2

2 + µ∥x∥1

FISTA 算法可以由下面的迭代格式给出

yk = xk−1 + k − 2
k + 1

(xk−1 − xk−2)

wk = yk − tkA⊤(Ayk − b)
xk = sign(wk) max{|wk| − tkµ, 0}

25 / 63

应用举例: LASSO 问题求解

取 µ = 10−3, 步长 t = 1
L

, 其中 L = λmax(A⊤A)

0 50 100 150 200 250 300 350 400
10

-10

10
-5

10
0

10
5

10
10

26 / 63

收敛性分析

定理 当用 FISTA 算法求解凸复合优化问题时, 若取固定步长 tk = 1/L, 则

ψ(xk)− ψ(x∗) ≤ 2L
(k + 1)2∥x

0 − x∗∥2

推论 当用 FISTA 算法求解凸复合优化问题时, 若迭代点 xk, yk, 步长 tk 以及
组合系数 γk 满足一定条件, 则

ψ(xk)− ψ(x∗) ≤ C

k2

其中 C 仅与函数 f 和初始点 x0 的选取有关

采用线搜索的 FISTA 算法具有 O
(

1
k2

)
的收敛速度

27 / 63

目录

5.1 近似点梯度法

5.2 Nesterov 加速算法

5.3 分块坐标下降法

5.4 交替方向乘子法

28 / 63

问题形式

考虑具有如下形式的问题

min
x∈X

F (x1, x2, · · · , xs) = f(x1, x2, · · · , xs) +
s∑

i=1
ri(xi)

f 是关于 x 的可微函数, 但不一定凸
ri(xi) 关于 xi 是适当的闭凸函数, 但不一定可微

挑战和难点

在非凸问题上, 很多针对凸问题设计的算法通常会失效
目标函数的整体结构十分复杂, 变量的更新需要很大计算量

29 / 63

问题形式

例 设参数 x = (x1, x2, · · · , xG) ∈ Rp, 分组 LASSO 模型

min
x

1
2n
∥b− Ax∥2

2 + λ
G∑

i=1

√
pi∥xi∥2

例 设 b ∈ Rm 是已知的观测向量, 低秩矩阵恢复模型

min
X,Y

1
2
∥A(XY)− b∥2

2 + α∥X∥2
F + β∥Y ∥2

F

例 设 M ∈ Rm×n 是已知的矩阵, 非负矩阵分解模型

min
X,Y ≥0

1
2
∥XY −M∥2

F + αr1(X) + βr2(Y)

30 / 63

变量更新方式

按照 x1, x2, · · · , xs 的次序依次固定其他 (s− 1) 块变量极小化 F

辅助函数
fk

i (xi) = f(xk
1, · · · , xk

i−1, xi, x
k−1
i+1 , · · · , xk−1

s)

在每一步更新中, 通常使用以下三种更新格式之一

xk
i = arg min

xi∈X k
i

{
fk

i (xi) + ri(xi)
}

(1)

xk
i = arg min

xi∈X k
i

{
fk

i (xi) + Lk−1
i

2
∥xi − xk−1

i ∥2
2 + ri(xi)

}
(2)

xk
i = arg min

xi∈X k
i

{
⟨ĝk

i , xi − x̂k−1
i ⟩+ Lk−1

i

2
∥xi − x̂k−1

i ∥2
2 + ri(xi)

}
(3)

31 / 63

算法格式

算法 分块坐标下降法

1 选择两组初始点 (x−1
1 , x−1

2 , · · · , x−1
s) = (x0

1, x0
2, · · · , x0

s)
2 for k = 1, 2, · · · do
3 for i = 1, 2, · · · do
4 使用格式 (1)、(2)、(3) 更新 xk

i

5 end for
6 if 满足停机条件 then
7 返回 (xk

1, xk
2, · · · , xk

s), 算法终止
8 end if
9 end for

32 / 63

算法格式

BCD 算法的子问题可采用三种不同的更新格式, 这三种格式可能会产生不同
的迭代序列, 可能会收敛到不同的解, 数值表现也不相同

格式 (1) 是最直接的更新方式, 保证整个迭代过程的目标函数值是下降的．
然而由于 f 的形式复杂, 子问题求解难度较大

在收敛性方面, 格式 (1) 在强凸问题上可保证目标函数收敛到极小值, 但在非
凸问题上不一定收敛

xk
i = arg min

xi∈X k
i

{
fk

i (xi) + ri(xi)
}

33 / 63

算法格式

格式 (2) (3) 是对格式 (1) 的修正, 不保证迭代过程目标函数的单调性, 但可
以改善收敛性结果．

格式 (3) 实质上为目标函数的一阶泰勒展开近似, 在一些测试问题上有更好
的表现, 可能的原因是使用一阶近似可以避开一些局部极小值点

格式 (3) 的计算量很小, 比较容易实现

xk
i = arg min

xi∈X k
i

{
fk

i (xi) + ri(xi)
}

xk
i = arg min

xi∈X k
i

{
fk

i (xi) + Lk−1
i

2
∥xi − xk−1

i ∥2
2 + ri(xi)

}

xk
i = arg min

xi∈X k
i

{
⟨ĝk

i , xi − x̂k−1
i ⟩+ Lk−1

i

2
∥xi − x̂k−1

i ∥2
2 + ri(xi)

}
34 / 63

例

考虑二元二次函数的优化问题

min f(x, y) = x2 − 2xy + 10y2 − 4x− 20y
采用格式 (1) 的分块坐标下降法

xk+1 = 2 + yk, yk+1 = 1 + xk+1

10
初始点为 (x, y) = (0.5, 0.2) 时的迭代点轨迹

0 2 4 6

1

2

35 / 63

不收敛反例

考虑

F (x1, x2, x3) = −x1x2 − x2x3 − x3x1 +
3∑

i=1
[(xi − 1)2

+ + (−xi − 1)2
+]

设 ε > 0, 初始点取为

x0 =
(
−1− ε, 1 + ε

2
,−1− ε

4

)
容易验证迭代序列满足

xk = (−1)k · (−1, 1,−1) + (−1
8

)k ·
(
−ε, ε

2
,−ε

4

)
迭代序列有两个聚点 (−1, 1,−1) 与 (1,−1, 1), 但都不是 F 的稳定点

36 / 63

应用举例: LASSO 问题求解

使用分块坐标下降法来求解 LASSO 问题

min
x

µ∥x∥1 + 1
2
∥Ax− b∥2

将自变量 x 记为 x = [xi x̄⊤
i]⊤, 矩阵 A 记为 A = [ai Āi]

应用格式 (1), 替换 ci = b− Āix̄i, 原问题等价于

min
xi

fi(xi) = µ|xi|+
1
2
∥ai∥2xi

2 − a⊤
i cixi

可直接写出最小值点

xk
i = arg min

xi
fi(xi) =


a⊤

i ci−µi

∥ai∥2 , a⊤
i ci > µ

a⊤
i ci+µi

∥ai∥2 , a⊤
i ci < −µ

0, 其他

37 / 63

应用举例: 非负矩阵分解

考虑最基本的非负矩阵分解问题

min
X,Y ≥0

f(X,Y) = 1
2
∥XY −M∥2

F

计算梯度
∂f

∂X
= (XY −M)Y ⊤,

∂f

∂Y
= X⊤(XY −M)

应用格式 (3), 当 ri(X) 为凸集示性函数时, 得到

Xk+1 = max{Xk − txk(XkY k −M)(Y k)⊤, 0}
Y k+1 = max{Y k − tyk(Xk)⊤(XkY k −M), 0}

38 / 63

目录

5.1 近似点梯度法

5.2 Nesterov 加速算法

5.3 分块坐标下降法

5.4 交替方向乘子法

39 / 63

典型问题形式

考虑如下凸问题

min
x1,x2

f1(x1) + f2(x2)

s.t. A1x1 + A2x2 = b
(4)

f1, f2 是适当的闭凸函数, 但不要求是光滑的

目标函数可以分成彼此分离的两块, 但是变量被线性约束结合在一起

40 / 63

问题形式举例

例 可以分成两块的无约束优化问题

min
x

f1(x) + f2(x)

引入一个新的变量 z 并令 x = z, 将问题转化为
min
x,z

f1(x) + f2(z)

s.t. x− z = 0
例 带线性变换的无约束优化问题

min
x

f1(x) + f2(Ax)

引入一个新的变量 z, 令 z = Ax, 则问题变为
min
x,z

f1(x) + f2(z)

s.t. Ax− z = 0
41 / 63

问题形式举例

例 凸集 C ⊂ Rn 上的约束优化问题

min
x

f(x)

s.t. Ax ∈ C

引入约束 z = Ax, 那么问题转化为

min
x,z

f(x) + IC(z)

s.t. Ax− z = 0

42 / 63

问题形式举例

例 全局一致性问题

min
x

N∑
i=1

ϕi(x)

令 x = z, 并将 x 复制 N 份, 分别为 xi, 那么问题转化为

min
xi,z

N∑
i=1

ϕi(xi)

s.t. xi − z = 0, i = 1, 2, · · · , N

43 / 63

增广拉格朗日函数法

首先写出问题 (4) 的增广拉格朗日函数

Lρ(x1, x2, y) =f1(x1) + f2(x2) + y⊤(A1x1 + A2x2 − b)

+ ρ

2
∥A1x1 + A2x2 − b∥2

2

增广拉格朗日函数法为如下更新

(xk+1
1 , xk+1

2) = arg min
x1,x2

Lρ(x1, x2, y
k)

yk+1 = yk + τρ(A1x
k+1
1 + A2x

k+1
2 − b)

44 / 63

交替方向乘子法

Alternating direction method of multipliers, ADMM

迭代格式如下

(xk+1
1 , xk+1

2) = arg min
x1,x2

Lρ(x1, x2, y
k)

yk+1 = yk + τρ(A1x
k+1
1 + A2x

k+1
2 − b)

⇓

xk+1
1 = arg min

x1
Lρ(x1, x

k
2, y

k)

xk+1
2 = arg min

x2
Lρ(xk+1

1 , x2, y
k)

yk+1 = yk + τρ(A1x
k+1
1 + A2x

k+1
2 − b)

45 / 63

原问题最优性条件

问题 (4) 的拉格朗日函数为

L(x1, x2, y) = f1(x1) + f2(x2) + y⊤(A1x1 + A2x2 − b)

若 x∗
1, x

∗
2 为问题 (4) 的最优解, y∗ 为对应的拉格朗日乘子, 则满足

0 ∈ ∂x1L(x∗
1, x

∗
2, y

∗) = ∂f1(x∗
1) + A⊤

1 y
∗ (5a)

0 ∈ ∂x2L(x∗
1, x

∗
2, y

∗) = ∂f2(x∗
2) + A⊤

2 y
∗ (5b)

A1x
∗
1 + A2x

∗
2 = b (5c)

条件 (5c) 称为原始可行性条件

条件 (5a) 和条件 (5b) 称为对偶可行性条件

46 / 63

ADMM 单步迭代最优性条件

关于 x2 的更新步骤

xk
2 = arg min

x

{
f2(x) + ρ

2
∥A1x

k
1 + A2x− b+ yk−1

ρ
∥2
}

根据最优性条件推出

0 ∈ ∂f2(xk
2) + A⊤

2 [yk−1 + ρ(A1x
k
1 + A2x

k
2 − b)]

当 τ = 1 时知
0 ∈ ∂f2(xk

2) + A⊤
2 y

k

47 / 63

ADMM 单步迭代最优性条件

关于 x1 的更新公式

xk
1 = arg min

x

{
f1(x) + ρ

2
∥A1x+ A2x

k−1
2 − b+ yk−1

ρ
∥2
}

假设子问题能精确求解, 根据最优性条件

0 ∈ ∂f1(xk
1) + A⊤

1 [ρ(A1x
k
1 + A2x

k−1
2 − b) + yk−1]

当 τ = 1 时知
0 ∈ ∂f1(xk

1) + A⊤
1 (yk + ρA2(xk−1

2 − xk
2))

48 / 63

ADMM 单步迭代最优性条件

对比条件 (5a)
0 ∈ ∂f1(x∗

1) + A⊤
1 y

∗

⇓
0 ∈ ∂f1(xk

1) + A⊤
1 (yk + ρA2(xk−1

2 − xk
2))

当 x2 更新取到精确解且 τ = 1 时, 判断 ADMM 是否收敛只需要检测
原始可行性

0 ≈ ∥rk∥ = ∥A1x
k
1 + A2x

k
2 − b∥

对偶可行性
0 ≈ ∥sk∥ = ∥A⊤

1 A2(xk−1
2 − xk

2)∥

49 / 63

线性化

考虑第一个子问题
min

x1
f1(x1) + ρ

2
∥A1x1 − vk∥2

当子问题目标函数可微时, 线性化为

xk+1
1 = arg min

x1

{
(∇f1(xk

1) + ρA⊤
1 (A1x

k
1 − vk))⊤x1 + 1

2ηk

∥x1 − xk∥2
2

}

这等价于做一步梯度下降

当目标函数不可微时, 可以考虑只将二次项线性化

xk+1
1 = arg min

x1

{
f1(x1) + ρ(A⊤

1 (A1x
k
1 − vk))⊤x1 + 1

2ηk

∥x1 − xk∥2
2

}

这等价于做一步近似点梯度步
50 / 63

缓存分解

考虑目标函数中含二次函数

f1(x1) = 1
2
∥Cx1 − d∥2

2

⇓
(C⊤C + ρA⊤

1 A1)x1 = C⊤d+ ρA⊤
1 v

k

首先对 C⊤C + ρA⊤
1 A1 进行 Cholesky 分解并缓存分解的结果, 在每步迭代中

只需要求解简单的三角形方程组

当 C⊤C + ρA⊤
1 A1 一部分容易求逆, 另一部分是低秩的情形时, 可以用SMW

公式来求逆

51 / 63

优化转移

为了方便求解子问题, 可以用一个性质好的矩阵 D 近似二次项 A⊤
1 A1, 即

xk+1
1 = arg min

x1

{
f1(x1) + ρ

2
∥A1x1 − vk∥2

2

}
⇓

xk+1
1 = arg min

x1

{
f1(x1) + ρ

2
∥A1x1 − vk∥2

2 + ρ

2
(x1 − xk)⊤(D − A⊤

1 A1)(x1 − xk)
}

通过选取合适的 D, 优化转移简化子问题更容易计算

当 D = ηk

ρ
I 时, 优化转移等价于做单步的近似点梯度步

52 / 63

二次罚项系数的动态调节

二次罚项系数 ρ 太大会导致原始可行性 ∥rk∥ 下降很快, 但是对偶可行性
∥sk∥ 下降很慢

二次罚项系数 ρ 太小, 则会有相反的效果

动态调节惩罚系数 ρ 的大小, 使得原始可行性和对偶可行性能够以比较一致
的速度下降到零

ρk+1 =


γpρ

k, ∥rk∥ > µ∥sk∥
ρk/γd ∥sk∥ > µ∥rk∥
ρk, 其他

常见的选择为 µ = 10, γp = γd = 2

53 / 63

多块问题的 ADMM

考虑有多块变量的情形

min
x1,x2,··· ,xN

f1(x1) + f2(x2) + · · ·+ fN(xN)

s.t. A1x1 + A2x2 + · · ·+ ANxN = b

多块 ADMM 迭代格式为
xk+1

1 = arg min
x
Lρ(x, xk

2, · · · , xk
N , y

k)

xk+1
2 = arg min

x
Lρ(xk+1

1 , x, · · · , xk
N , y

k)

· · · · · · · · · · · ·
xk+1

N = arg min
x
Lρ(xk+1

1 , xk+1
2 , · · · , x, yk)

yk+1 = yk + τρ(A1x
k+1
1 + A2x

k+1
2 + · · ·+ ANx

k+1
N − b)

其中 τ ∈ (0, (
√

5 + 1)/2) 为步长参数
54 / 63

应用举例: LASSO 问题

考虑 LASSO 问题
min µ∥x∥1 + 1

2
∥Ax− b∥2

转换为标准问题形式

min
x,z

1
2
∥Ax− b∥2 + µ∥z∥1

s.t. x = z

交替方向乘子法迭代格式为

xk+1 = arg min
x

{1
2
∥Ax− b∥2 + ρ

2
∥x− zk + yk/ρ∥2

2

}
= (A⊤A+ ρI)−1(A⊤b+ ρzk − yk)

55 / 63

应用举例: LASSO 问题

交替方向乘子法迭代格式为

zk+1 = arg min
z

{
µ∥z∥1 + ρ

2
∥xk+1 − z + yk/ρ∥2

}
= prox(µ/ρ)∥·∥1(xk+1 + yk/ρ)

yk+1 = yk + τρ(xk+1 − zk+1)

在求解 x 迭代时, 可以使用固定的罚因子 ρ, 缓存矩阵 A⊤A+ ρI 的初始分解

主要运算量来自更新 x 变量时求解线性方程组, 复杂度为 O(n3)

56 / 63

应用举例: LASSO 问题

考虑 LASSO 问题的对偶问题
min b⊤y + 1

2∥y∥
2

s.t. ∥A⊤y∥∞ ≤ µ

引入约束 A⊤y + z = 0, 可以得到如下等价问题

min b⊤y + 1
2
∥y∥2︸ ︷︷ ︸

f(y)

+ I∥z∥∞≤µ(z)︸ ︷︷ ︸
h(z)

s.t. A⊤y + z = 0

对约束 A⊤y + z = 0 引入乘子 x, 对偶问题的增广拉格朗日函数

Lρ(y, z, x) = b⊤y + 1
2
∥y∥2 + I∥z∥∞≤µ(z)− x⊤(A⊤y + z) + ρ

2
∥A⊤y + z∥2

57 / 63

应用举例: LASSO 问题

当固定 y, x 时, 对 z 的更新即向无穷范数球 {z | ∥z∥∞ ≤ µ} 做欧几里得投
影, 即将每个分量截断在区间 [−µ, µ]

当固定 z, x 时, 对 y 的更新即求解线性方程组

(I + ρAA⊤)y = A(xk − ρzk+1)− b

ADMM 迭代格式为

zk+1 = P∥z∥∞≤µ(xk/ρ− A⊤yk)
yk+1 = (I + ρAA⊤)−1(A(xk − ρzk+1)− b)
xk+1 = xk − τρ(A⊤yk+1 + zk+1)

由于 m≪ n, 求解 y 更新的线性方程组需要的计算量是 O(m3)

58 / 63

应用举例: 矩阵分离问题

考虑矩阵分离问题

min
X,S

∥X∥∗ + µ∥S∥1

s.t. X + S = M

引入乘子 Y 得到增广拉格朗日函数

Lρ(X,S, Y) = ∥X∥∗ + µ∥S∥1

+ ⟨Y,X + S −M⟩+ ρ

2
∥X + S −M∥2

F

59 / 63

应用举例: 矩阵分离问题

对于 X 子问题

Xk+1 = arg min
X

Lρ(X,Sk, Y k)

= arg min
X

{
∥X∥∗ + ρ

2
∥X + Sk −M + Y k

ρ
∥2

F

}

= arg min
X

{
1
ρ
∥X∥∗ + 1

2
∥X + Sk −M + Y k

ρ
∥2

F

}
= UDiag(prox(1/ρ)∥·∥1(σ(A)))V ⊤

其中 A = M − Sk − Y k

ρ
, σ(A) 为 A 的所有非零奇异值构成的向量并且

UDiag(σ(A))V ⊤ 为 A 的约化奇异值分解

60 / 63

应用举例: 矩阵分离问题

对于 S 子问题

Sk+1 = arg min
S

Lρ(Xk+1, S, Y k)

= arg min
S

{
µ∥S∥1 + ρ

2
∥Xk+1 + S −M + Y k

ρ
∥2

F

}

= prox(µ/ρ)∥·∥1(M −Xk+1 − Y k

ρ
)

交替方向乘子法的迭代格式为

Xk+1 = UDiag(prox(1/ρ)∥·∥1(σ(A)))V ⊤

Sk+1 = prox(µ/ρ)∥·∥1(M − Lk+1 − Y k

ρ
)

Y k+1 = Y k + τρ(Xk+1 + Sk+1 −M)
61 / 63

应用举例: 全局一致性优化问题

考虑全局一致性优化问题

min
xi,z

N∑
i=1

ϕi(xi)

s.t. xi − z = 0, i = 1, 2, · · · , N

增广拉格朗日函数为

Lρ(x1, · · · , xN , z, y1, · · · , yN) =
N∑

i=1
ϕi(xi) +

N∑
i=1

y⊤
i (xi − z) + ρ

2

N∑
i=1
∥xi − z∥2

固定 zk, yk
i , 更新 xi 的公式为

xk+1
i = arg min

x

{
ϕi(x) + ρ

2
∥x− zk + yk

i /ρ∥2
}

62 / 63

应用举例: 全局一致性优化问题

在一般情况下更新 xi 的表达式为

xk+1
i = proxϕi/ρ(zk − yk

i /ρ)

固定 xk+1
i , yk

i , 关于 z 可以直接写出显式解

zk+1 = 1
N

N∑
i=1

(xi
k+1 + yk

i /ρ)

交替方向乘子法迭代格式为

xk+1
i = proxϕi/ρ(zk − yk

i /ρ), i = 1, 2, · · · , N

zk+1 = 1
N

N∑
i=1

(xk+1
i + yk

i /ρ)

yk+1
i = yi

k + τρ(xi
k+1 − zk+1), i = 1, 2, · · · , N

63 / 63

Q&A
Thank you!
感谢您的聆听和反馈

