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最优化问题的一般形式

最优化问题一般可以描述为

min f(x)
s.t. x ∈ X

(1)

x = (x1, x2, · · · , xn)⊤ ∈ Rn 是决策变量

f : Rn → R 是目标函数
X ⊆ Rn 是约束集合或可行域，可行域包含的点称为可行解或可行点

当 X = Rn 时，问题 (1) 称为无约束优化问题
集合 X 通常可以由约束函数 ci(x) : Rn → R, i = 1, 2, · · · , m + l 表达为

X = {x ∈ Rn | ci(x) ≤ 0, i = 1, 2, · · · , m,

ci(x) = 0, i = m + 1, m + 2, · · · , m + l}
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最优化问题的一般形式

在所有满足约束条件的决策变量中，使目标函数取最小值的变量 x∗ 称为优
化问题 (1) 的最优解，即对任意 x ∈ X 都有

f(x) ≥ f(x∗)

如果求解目标函数 f 的最大值，则“min”应替换为“max”
函数 f 的最小（最大）值不一定存在，但其下（上）确界总是存在的

x 可以是矩阵、多维数组或张量等
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最优化问题的类型

线性规划 目标函数和约束函数均为线性函数的问题

整数规划 变量只能取整数的问题

非线性规划 目标函数和约束函数中至少有一个为非线性函数的问题

二次规划 目标函数是二次函数而约束函数是线性函数的问题

半定规划 极小化关于半正定矩阵的线性函数的问题

稀疏优化 最优解只有少量非零元素的问题

非光滑优化 包含非光滑函数的问题

低秩矩阵优化 最优解是低秩矩阵的问题

鲁棒优化、组合优化、随机优化、零阶优化、流形优化、分布式优化等
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稀疏优化

给定 b ∈ Rm，矩阵 A ∈ Rm×n，且向量 b 的维数远小于向量 x 的维数，即
m ≪ n. 考虑线性方程组求解问题

Ax = b

方程组欠定，存在无穷多个解

原始信号中有较多的零元素，即稀疏解

(ℓ0)

min
x∈Rn

∥x∥0

s.t. Ax = b
(ℓ2)

min
x∈Rn

∥x∥2

s.t. Ax = b
(ℓ1)

min
x∈Rn

∥x∥1

s.t. Ax = b

压缩感知（compressive sensing），即通过部分信息恢复全部信息的解决方案
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稀疏优化

MATLAB 仿真
1 m = 128; n = 256;
2 A = randn(m, n); u = sprandn(n, 1, 0.1);
3 b = A * u;

若 A, b 满足一定的条件，向量 u 也是 ℓ1 范数优化问题的唯一最优解
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稀疏优化代表作
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稀疏优化

原点到仿射集 Ax = b 的投影

绝对值函数在零点处不可微，即非光滑

A 通常是稠密矩阵，甚至元素未知或者不能直接存储

13 / 31



LASSO 问题

考虑带 ℓ1 范数正则项的优化问题

min
x∈Rn

µ∥x∥1 s.t. Ax = b (2)

⇓

min
x∈Rn

µ∥x∥1 + 1
2

∥Ax − b∥2
2 (3)

µ > 0 是给定的正则化参数
称为 LASSO（least absolute shrinkage and selection operator）

本课程大部分算法都将针对(2)和(3)给出
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LASSO 代表作
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深度学习

深度学习（deep learning）是机器学习的一个子领域

起源可以追溯至 20 世纪 40 年代，雏形出现在控制论
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深度学习

常见的激活函数类型

Sigmoid 函数
t(z) = 1

1 + exp(−z)
Heaviside 函数

t(z) =

1, z ≥ 0
0, z < 0

ReLU 函数
t(z) = max{0, z}
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多层感知机

多层感知机（multi-layer perceptron, MLP）也叫前馈神经网络

通过已有的知识来对未知事物进行预测
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卷积神经网络

卷积神经网络（convolutional neural network, CNN)

给定二维图像 I ∈ Rn×n 和卷积核 K ∈ Rk×k，定义卷积操作 S = I ∗ K，即

Si,j = ⟨I(i : i + k − 1, j : j + k − 1), K⟩

1 2 2 1 2 1 1
0 0 0 1 2 0 0
2 0 1 2 0 1 1
2 1 1 0 1 0 1
1 0 2 0 1 2 2
1 2 1 0 1 0 2
0 2 2 1 1 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

6 5 6 7 4
3 3 6 1 5
7 3 4 6 4
5 5 4 1 7
7 4 6 4 4

S = I ∗ K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1
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卷积神经网络

LeCun 等人开创性的建立了数字分类的神经网络 LeNet-5，成功在银行识别
支票上的手写数字
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反卷积网络

生成网络是一种特殊的卷积网络，它使用转置卷积，也称为反卷积，常用的
有生成对抗网络、  变分自编码器、扩散模型
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递归神经网络

递归神经网络（recurrent neural networks, RNN) 建立在与前馈神经网络相同
的计算单元上，但不必分层组织，并且允许定向循环
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深度学习中的优化算法

典型的数学模型

min
x∈W

1
N

N∑
i=1

ℓ(f(ai, x), bi) + µφ(x)

随机梯度类算法
pytorch/caffe2: adadelta, adagrad, adam, nesterov, rmsprop, YellowFin
https://github.com/pytorch/pytorch/tree/master/caffe2/sgd
pytorch/torch: sgd, asgd, adagrad, rmsprop, adadelta, adam, adamax
https://github.com/pytorch/pytorch/tree/master/torch/optim
tensorflow: Adadelta, AdagradDA, Adagrad, ProximalAdagrad, Ftrl,
Momentum, adam, Momentum, CenteredRMSProp
https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/core/kernels/training_ops.cc
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神经网络代表作
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全局和局部最优解

如果 f(x̄) ≤ f(x), ∀x ∈ X，则称 x̄ 为全局极小解

如果存在 Nε(x̄) 使得 f(x̄) ≤ f(x), ∀x ∈ Nε(x̄) ∩ X , 则称 x̄ 为局部极小解

进一步，如果有 f(x̄) < f(x), ∀x ∈ Nε(x̄) ∩ X 且 x ̸= x̄ 成立，则称 x̄ 为严格
局部极小解

x

f(x)

全局极小解

严格局部极小解

非严格局部极小解
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收敛性

给定初始点 x0，记算法迭代产生的点列为 {xk}

如果 {xk} 在某种范数 ∥ · ∥ 的意义下满足

lim
k→∞

∥xk − x∗∥ = 0

且收敛的点 x∗ 为一个局部（全局）极小解，则称该算法依点列收敛到局
部（全局）极小解

如果从任意初始点 x0 出发，算法都是依点列收敛到局部（全局）极小解
的，则称该算法全局依点列收敛到局部（全局）极小解

记对应的函数值序列 {f(xk)}，则称该算法（全局）依函数值收敛到局部
（全局）极小值
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收敛准则

对于无约束优化问题，常用的收敛准则有

f(xk) − f ∗

max{|f ∗|, 1}
≤ ε1, ∥∇f(xk)∥ ≤ ε2

如果最优解未知，通常使用相对误差

∥xk+1 − xk∥
max{∥xk∥, 1}

≤ ε3,
|f(xk+1) − f(xk)|
max{|f(xk)|, 1}

≤ ε4

对于约束优化问题，还需要考虑约束违反度

ci(xk) ≤ ε5, i = 1, 2, · · · , m

|ci(xk)| ≤ ε6, i = m + 1, m + 2, · · · , m + l
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渐进收敛速度

设{xk} 为算法产生的迭代点列且收敛于 x∗

Q-线性收敛 ∥xk+1 − x∗∥
∥xk − x∗∥

≤ a, a ∈ (0, 1)

Q-次线性收敛
lim

k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 1

Q-超线性收敛

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0

Q-二次收敛 ∥xk+1 − x∗∥
∥xk − x∗∥2 ≤ a, a > 0
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渐进收敛速度

点列 {2−k} 是 Q-线性收敛的

点列 {1/k} 是 Q-次线性收敛的

点列 {2−2k} 是 Q-二次收敛的, 也是 Q-超线性收敛的
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一般来说，选择 Q-超线性收敛和 Q-二次收敛的算法
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Q&A
Thank you!
感谢您的聆听和反馈


