
第五章 无约束优化算法

修贤超

https://xianchaoxiu.github.io

https://xianchaoxiu.github.io


目录

5.1 线搜索方法

5.2 梯度类算法

5.3 次梯度算法

5.4 牛顿类算法

5.5 拟牛顿类算法

5.6 信赖域算法

5.7 非线性最小二乘问题算法

1 / 69



引言: 无约束可微优化算法

考虑无约束优化问题
min
x∈Rn

f(x)

线搜索 xk+1 = xk + αkdk

先确定下降方向: 负梯度、牛顿方向、拟牛顿方向等
按某种准则搜索步长

信赖域 zk = xk + dk

dk = arg min
d

(gk)⊤d + d⊤Bd s.t. ∥d∥2 ≤ ∆k

给定信赖域半径 (步长)∆k, 构造信赖域子问题求解方向 dk

如果 zk 满足下降性条件，则 xk+1 = zk, 否则 xk+1 = xk 更新 ∆k
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线搜索算法

求解 f(x) 的最小值点如同盲人下山, 无法一眼望知谷底
首先确定下一步该向哪一方向行走

再确定沿着该方向行走多远后停下以便选取下一个下山方向

线搜索类算法的数学表述

xk+1 = xk + αkdk

αk 为步长

dk 为下降方向, 即 (dk)⊤∇f(xk) < 0
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αk 的选取

首先构造一元辅助函数
ϕ(α) = f(xk + αdk)

线搜索的目标是选取合适的 αk 使得 ϕ(αk) 尽可能减小

αk 应该使得 f 充分下降

不应在寻找 αk 上花费过多的计算量

一个自然的想法是寻找 αk 使得

αk = arg min
α>0

ϕ(α)

称为精确线搜索算法, 在实际应用中较少使用

4 / 69



例 5.1

考虑一维无约束优化问题
min

x
f(x) = x2

迭代初始点 x0 = 1, 下降方向 dk = −sign(xk)

选取如下两种步长

αk,1 = 1
3k+1 , αk,2 = 1 + 2

3k+1

简单计算可以得到

xk
1 = 1

2
(1 + 1

3k
), xk

2 = (−1)k

2
(1 + 1

3k
)

序列 {f(xk
1)} 和序列 {f(xk

2)} 均单调下降, 但序列 {xk
1} 收敛的点不是极小值

点, 序列 {xk
2} 则在原点左右振荡, 不存在极限
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非精确线搜索

定义 5.1 设 dk 是点 xk 处的下降方向, 若

f(xk + αdk) ≤ f(xk) + c1α∇f(xk)⊤dk

则称步长 α 满足 Armijo 准则

参数 c1 ∈ (0, 1) 是一个常数, 通常取 c1 = 10−3

引入 Armijo 准则保证每一步迭代充分下降

需要配合其他准则以保证迭代的收敛性, 反例 α = 0
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几何含义

点 (α, ϕ(α)) 必须在直线
l(α) = ϕ(0) + c1α∇f(xk)⊤dk

的下方, 图中区间 [0, α1] 中的点均满足 Armijo 准则

α

ϕ(α)

ϕ(0)

l(α) = ϕ(0) + c1α∇f(xk)Tdk

α1
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回退法

给定初值 α̂, 以指数方式缩小试探步长, 找到第一个满足 Armijo 准则的点

αk = γj0α̂

其中 j0 = min{j | f(xk + γjα̂dk) ≤ f(xk) + c1γ
jα̂∇f(xk)⊤dk}, γ ∈ (0, 1)

==========
算法 5.1 线搜索回退法
1 选择初始步长 α̂, 参数 γ, c ∈ (0, 1). 初始化 α← α̂
2 while f(xk + αdk) > f(xk) + cα∇f(xk)⊤dk do
3 令 α← γα
4 end while
5 输出 αk = α
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Wolfe 准则

定义 5.2 设 dk 是点 xk 处的下降方向, 若

f(xk + αdk) ≤ f(xk) + cα∇f(xk)⊤dk,

f(xk + αdk) ≥ f(xk) + (1− c)α∇f(xk)⊤dk

则称步长 α 满足 Goldstein 准则, 其中 c ∈ (0, 1
2)

定义 5.3 设 dk 是点 xk 处的下降方向, 若

f(xk + αdk) ≤ f(xk) + c1α∇f(xk)⊤dk,

∇f(xk + αdk)⊤dk ≥ c2∇f(xk)⊤dk

则称步长 α 满足 Wolfe 准则, 其中 c1, c2 ∈ (0, 1) 为给定的常数且 c1 < c2
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Wolfe 准则

Wolfe 准则实际要求 ϕ(α) 在点 α 处切线的斜率不能小于 ϕ′(0) 的 c2 倍

ϕ(α) 的极小值点 α∗ 处有 ϕ′(α∗) = ∇f(xk + α∗dk)⊤dk = 0, 因此 α∗ 永远满足
条件二. 而选择较小的 c1 可使得 α∗ 同时满足条件一, 即 Wolfe 准则在绝大
多数情况下会包含线搜索子问题的精确解

α

ϕ(α)

ϕ(0)

l(α) = ϕ(0) + c1α∇f(xk)Tdk

α2α1

c2∇f(xk)Tdk
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Zoutendijk 定理

定理 5.1 考虑一般的迭代格式 xk+1 = xk + αkdk, 其中 dk 是搜索方向, αk 是
步长, 且在迭代过程中 Wolfe 准则满足. 假设目标函数 f 下有界、连续可微
且梯度 L -利普希茨连续, 即

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀ x, y ∈ Rn

那么
∞∑

k=0
cos2 θk∥∇f(xk)∥2 < +∞

其中 cos θk 为负梯度 −∇f(xk) 和下降方向 dk 夹角的余弦, 即

cos θk = −∇f(xk)⊤dk

∥∇f(xk)∥∥dk∥

这个不等式也被称为Zoutendijk 条件
11 / 69



线搜索算法的收敛性

推论 5.1 对于迭代法 xk+1 = xk + αkdk, 设 θk 为每一步负梯度 −∇f(xk) 与
下降方向 dk 的夹角, 并假设对任意的 k, 存在常数 γ > 0, 使得

θk <
π

2
− γ

则在 Zoutendijk 定理成立的条件下, 有

lim
k→∞
∇f(xk) = 0

12 / 69



线搜索算法收敛性的证明

证明 假设结论不成立, 即存在子列 {kl} 和正常数 δ > 0, 使得

∥∇f(xkl)∥ ≥ δ, l = 1, 2, · · ·

根据 θk 的假设, 对任意的 k 有

cos θk > sin γ > 0

仅考虑 Zoutendijk 条件中第 kl 项的和满足

∞∑
k=0

cos2 θk∥∇f(xk)∥2 ≥
∞∑

l=1
cos2 θkl

∥∇f(xkl)∥2

这显然和 Zoutendijk 定理矛盾
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梯度下降法

注意到 ϕ(α) = f(xk + αdk) 有泰勒展开

ϕ(α) = f(xk) + α∇f(xk)⊤dk +O(α2∥dk∥2)

由柯西不等式, 当 α 足够小时取 dk = −∇f(xk) 会使函数下降最快

xk+1 = xk − αk∇f(xk)

另一种理解方式

xk+1 = arg min
x

f(xk) +∇f(xk)⊤(x− xk) + 1
αk

∥x− xk∥2
2

= arg min
x
∥x− (xk − αk∇f(xk))∥2

2

= xk − αk∇f(xk)
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二次函数的梯度法

设二次函数 f(x, y) = x2 + 10y2, 初始点 (x0, y0) 取为 (10, 1), 取固定步长
αk = 0.085, 使用梯度法 xk+1 = xk − αk∇f(xk) 进行 15 次迭代

−10 −5 0 5 10
−4

−2

0

2

4
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二次函数的收敛定理

定理 5.2 考虑正定二次函数

f(x) = 1
2

x⊤Ax− b⊤x

设最优值点为 x∗. 若使用梯度法 xk+1 = xk − αk∇f(xk) 并选取 αk 为精确线
搜索步长, 即

αk = ∥∇f(xk)∥2

∇f(xk)⊤A∇f(xk)

则梯度法关于迭代点列 {xk} 是 Q-线性收敛, 即

∥xk+1 − x∗∥2
A ≤ (λ1 − λn

λ1 + λn

)2∥xk − x∗∥2
A
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梯度法在凸函数上的收敛性

对于可微函数 f，若存在 L > 0，对任意的 x, y ∈ dom f 有

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

则称 f 是梯度利普希茨连续的，相应利普希茨常数为 L

定理 5.3 设 f(x) 为 凸的梯度 L -利普希茨连续函数，f ∗ = f(x∗) = infx f(x)
存在且可达，如果步长 αk 取为常数 α 且满足 0 < α < 1

L
，那么点列 {xk} 的

函数值收敛到最优值, 且在函数值的意义下收敛速度为 O( 1
k
)
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梯度法在强凸函数上的收敛性

引理 5.1 设函数f(x) 是 Rn 上的凸可微函数, 则以下结论等价
f 的梯度为 L -利普希茨连续的
函数 g(x) = L

2 x⊤x− f(x) 是凸函数
∇f(x) 有余强制性, 即对任意的 x, y ∈ Rn, 有

(∇f(x)−∇f(y))⊤(x− y) ≥ 1
L
∥∇f(x)−∇f(y)∥2

定理 5.4 设f(x) 为 m -强凸的梯度 L -利普希茨连续函数, f(x∗) = infx f(x)
存在且可达. 如果步长 α 满足 0 < α < 2

m+L
, 那么由梯度下降法迭代得到的

点列 {xk} 收敛到 x∗, 且为Q-线性收敛
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应用举例: LASSO 问题求解

考虑
min f(x) = 1

2
∥Ax− b∥2 + µ∥x∥1

由于 ∥x∥1 不光滑, 考虑 Huber 光滑函数

lδ(x) =


1
2δ

x2, |x| < δ

|x| − δ
2 , 其他

−4 −2 0 2 4
0

1

2

3

4

x

y

δ = 0
δ = 0.2
δ = 1
δ = 2
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应用举例: LASSO 问题求解

光滑化 LASSO 问题为

min fδ(x) = 1
2
∥Ax− b∥2 + µLδ(x), 其中 Lδ(x) =

n∑
i=1

lδ(xi)

fδ(x) 的梯度为
∇fδ(x) = A⊤(Ax− b) + µ∇Lδ(x)

其中

(∇Lδ(x))i =

sign(xi), |xi| > δ
xi

δ
, |xi| ≤ δ

fδ(x) 的梯度是利普希茨连续的, 且相应常数为 L = ∥A⊤A∥2 + µ
δ

21 / 69



应用举例: LASSO 问题求解

光滑化 LASSO 问题求解迭代过程
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应用举例: LASSO 问题求解

精确解 (左) v.s. 梯度法解 (右)

100 200 300 400 500 600 700 800 900 1000
-3

-2

-1

0

1

2

3

100 200 300 400 500 600 700 800 900 1000
-3

-2

-1

0

1

2

3

23 / 69



目录

5.1 线搜索方法

5.2 梯度类算法

5.3 次梯度算法

5.4 牛顿类算法

5.5 拟牛顿类算法

5.6 信赖域算法

5.7 非线性最小二乘问题算法

24 / 69



次梯度算法结构

回顾一阶充要条件

x∗是一个全局极小点 ⇔ 0 ∈ ∂f(x∗)

类似梯度法构造如下次梯度算法的迭代格式

xk+1 = xk − αkgk, gk ∈ ∂f(xk)

固定步长 αk = α

固定 ∥xk+1 − xk∥，即 αk∥gk∥ 为常数
消失步长 αk → 0 且 ∑∞

k=0 αk = +∞
选取 αk 使其满足某种线搜索准则
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应用举例: LASSO 问题求解

考虑 LASSO 问题 min f(x) = 1
2∥Ax− b∥2 + µ∥x∥1

次梯度算法 xk+1 = xk − αk(A⊤(Axk − b) + µsign(xk))
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梯度法的困难

考虑无约束优化问题
min
x∈Rn

f(x)

梯度下降法
xk+1 = xk − αk∇f(xk)

当 ∇2f(x) 的条件数较大时, 收敛速度比较缓慢

如果 f(x) 足够光滑, 可利用 f(x) 的二阶信息改进下降方向以加速迭代
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经典牛顿法

对于可微二次函数 f(x), 考虑在点 xk 的二阶泰勒近似

f(xk + dk) = f(xk) +∇f(xk)⊤dk + 1
2

(dk)⊤∇2f(xk)dk + o(∥dk∥2)

将等式右边视作 dk 的函数并极小化, 得到牛顿方程

∇2f(xk)dk = −∇f(xk)

若 ∇2f(xk) 非奇异, 可构造迭代格式

xk+1 = xk − αk∇2f(xk)−1∇f(xk)

当步长 αk = 1 时, 称为经典牛顿法
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经典牛顿法的收敛性

定理 5.6 假设目标函数 f 是二阶连续可微函数, 且海瑟矩阵在最优值点 x∗

的一个邻域 Nδ(x∗) 内是利普希茨连续的，即存在常数 L > 0 使得

∥∇2f(x)−∇2f(y)∥ ⩽ L∥x− y∥, ∀x, y ∈ Nδ(x∗)

如果 f(x) 在点 x∗ 处满足

∇f(x∗) = 0,∇2f(x∗) ≻ 0

则对于经典牛顿法有

如果初始点离 x∗ 足够近, 则迭代点列 {xk} 收敛到 x∗

{xk} 是 Q-二次收敛到 x∗

{∥∇f(xk)∥} 是 Q-二次收敛到 0
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收敛速度分析

经典牛顿法说明

初始点 x0 需要距离最优解充分近，即只有局部收敛性

∇2f(x∗) 需正定, 半正定条件下可能退化到 Q-线性收敛
∇2f 的条件数较高时, 将对初值的选择作出较严苛的要求

解决方案

先以梯度类算法求得较低精度的解，然后用牛顿法加速

修正牛顿法

非精确牛顿法

拟牛顿类算法
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修正牛顿法

算法 5.3 带线搜索的修正牛顿法
1 给定初始点 x0

2 for k = 0, 1, 2, · · · do
3 确定矩阵 Ek 使得矩阵 Bk = ∇2f(xk) + Ek 正定且条件数较小
4 求解修正的牛顿方程 Bkdk = −∇f(xk) 得方向 dk

5 使用任意一种线搜索准则确定步长 αk

6 更新 xk+1 = xk + αkdk

7 end for

==========

Bk 应具有较低的条件数

对 ∇2f(x) 的改动较小, 以保存二阶信息
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非精确牛顿法

当变量维数很大时，海瑟矩阵 ∇2f(x) 计算存在困难，且求逆代价很高

使用迭代法求解牛顿方程，在一定的精度下提前停机, 以提高求解效率

引入向量 rk 来表示残差, 将上述方程记为

∇2f(xk)dk = −∇f(xk) + rk

因此终止条件可设置为
∥rk∥ ⩽ ηk∥∇f(xk)∥

不同的 {ηk} 将导致不同的精度要求, 使算法有不同的收敛速度
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应用举例: 逻辑回归模型

考虑二分类的逻辑回归模型

min
x

ℓ(x) = 1
m

m∑
i=1

ln(1 + exp(−bia
⊤
i x)) + λ∥x∥2

2

计算目标函数的梯度与海瑟矩阵

∇ℓ(x) = 1
m

m∑
i=1

1
1 + exp(−bia⊤

i x)
· exp(−bia

⊤
i x) · (−biai) + 2λx

= − 1
m

m∑
i=1

(1− pi(x))biai + 2λx

其中 pi(x) = 1
1+exp(−bia⊤

i x)
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应用举例: 逻辑回归模型

进一步对 ∇ℓ(x) 求导

∇2ℓ(x) = 1
m

m∑
i=1

bi · ∇pi(x)a⊤
i + 2λI

= 1
m

m∑
i=1

bi
−1

(1 + exp(−bia⊤
i x))2 · exp(−bia

⊤
i x) · (−biaia

⊤
i ) + 2λI

= 1
m

m∑
i=1

(1− pi(x))pi(x)aia
⊤
i + 2λI (b2

i = 1)
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应用举例: 逻辑回归模型

引入矩阵 A = [a1, a2, · · · , am]⊤ ∈ Rm×n, 向量 b = (b1, b2, · · · , bm)⊤, 以及

p(x) = (p1(x), p2(x), · · · , pm(x))⊤

重写梯度和海瑟矩阵为

∇ℓ(x) = − 1
m

A⊤(b− b⊙ p(x)) + 2λx

∇2ℓ(x) = 1
m

A⊤W (x)A + 2λI

最终牛顿法迭代格式为

xk+1 = xk + ( 1
m

A⊤W (xk)A + 2λI)−1( 1
m

A⊤(b− b⊙ p(xk))− 2λxk)
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应用举例: 逻辑回归模型

设置精度条件为

∥∇2ℓ(xk)dk +∇ℓ(xk)∥2 ⩽ min{∥∇ℓ(xk)∥2
2, 0.1∥∇ℓ(xk)∥2}
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割线方程的推导

设 f(x) 是二阶连续可微函数. 对 ∇f(x) 在点 xk+1 处一阶泰勒近似

∇f(x) = ∇f(xk+1) +∇2f(xk+1)(x− xk+1) +O(∥x− xk+1∥2)

令 x = xk, 且 sk = xk+1 − xk为点差, yk = ∇f(xk+1)−∇f(xk)为梯度差, 得

∇2f(xk+1)sk +O(∥sk∥2) = yk

忽略高阶项 ∥sk∥2, 近似海瑟矩阵的矩阵 Bk+1 满足方程

Bk+1sk = yk

或其逆矩阵 Hk+1 满足
Hk+1yk = sk

上述两个方程称为割线方程
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曲率条件

近似矩阵 Bk 正定, 即有必要条件

(sk)⊤Bk+1sk > 0 ⇒ (sk)⊤yk > 0

如果线搜索使用 Wolfe 准则

∇f(xk + αdk)⊤dk ⩾ c2∇f(xk)⊤dk

⇓
∇f(xk+1)⊤sk ⩾ c2∇f(xk)⊤sk

两边同时减去 ∇f(xk)⊤sk, 由于 c2 − 1 < 0 且 sk 是下降方向得到

(yk)⊤sk ⩾ (c2 − 1)∇f(xk)⊤sk > 0
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拟牛顿算法的基本框架

算法 5.4 拟牛顿算法框架
1 给定初始坐标 x0 ∈ Rn, 初始矩阵 B0 ∈ Rn×n(或 H0), k = 0
2 while 未达到停机准则 do
3 计算方向 dk = −(Bk)−1∇f(xk) 或 dk = −Hk∇f(xk)
4 通过线搜索 (Wolfe) 产生步长 αk > 0, 令 xk+1 = xk + αkdk

5 更新海瑟矩阵的近似矩阵 Bk+1 或其逆矩阵 Hk+1

6 k ← k + 1
7 end while
==========

基于 Hk 的拟牛顿算法更实用

基于 Bk 的拟牛顿算法有较好的理论性质
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秩一更新 (SR1)

对于拟牛顿矩阵 Bk ∈ Rn×n, 设 0 ̸= u ∈ Rn 且 a ∈ R 待定, 则 uu⊤ 是秩一矩
阵, 且有秩一更新

Bk+1 = Bk + auu⊤

根据割线方程 Bk+1sk = yk, 代入秩一更新得到

(Bk + auu⊤)sk = yk

⇓
auu⊤sk = (a · u⊤sk)u = yk −Bksk

令 u = yk −Bksk，代入上式有

(a · (yk −Bksk)⊤sk)(yk −Bksk) = yk −Bksk
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秩一更新公式

假设 (a · (yk −Bksk)⊤sk) ̸= 0, 则 a = 1
(yk−Bksk)⊤sk

拟牛顿矩阵 Bk 的秩一更新公式为

Bk+1 = Bk + uu⊤

u⊤sk
, u = yk −Bksk

拟牛顿矩阵 Hk 的秩一更新公式为

Hk+1 = Hk + vv⊤

v⊤yk
, v = sk −Hkyk

Bk 和 Hk 的公式在形式上互为对偶
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BFGS 公式

设 0 ̸= u, v ∈ Rn 且 a, b ∈ R 待定, 则有秩二更新形式

Bk+1 = Bk + auu⊤ + bvv⊤

根据割线方程 Bk+1sk = yk, 将秩二更新的待定参量式代入得到

Bk+1sk = (Bk + auu⊤ + bvv⊤)sk = yk

⇓
(a · u⊤sk)u + (b · v⊤sk)v = yk −Bksk

令 (a · u⊤sk)u 对应 yk 相等, (b · v⊤sk)v 对应 −Bksk 相等, 即有

a · u⊤sk = 1, u = yk, b · v⊤sk = −1, v = Bksk
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BFGS 公式

将上述参量代入割线方程, 即得 BFGS 更新公式

Bk+1 = Bk + uu⊤

(sk)⊤u
− vv⊤

(sk)⊤v

在拟牛顿类算法中, 基于 Bk 的 BFGS 公式为

Bk+1 = Bk + yk(yk)⊤

(sk)⊤yk
− Bksk(Bksk)⊤

(sk)⊤Bksk

利用 Sherman-Morrison-Woodbury (SMW) 公式，基于 Hk 的 BFGS 公式为

Hk+1 =
(

I − sk(yk)⊤

(sk)⊤yk

)⊤

Hk

(
I − sk(yk)⊤

(sk)⊤yk

)
+ sk(sk)⊤

(sk)⊤yk
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拟牛顿法的全局收敛性

定理 5.8 假设初始矩阵 B0 是对称正定矩阵, 目标函数 f(x) 是二阶连续可微
函数, 下水平集

L = {x ∈ Rn | f(x) ⩽ f(x0)}
是凸的, 且存在 m, M ∈ R+ 使得对 ∀z ∈ Rn, x ∈ L 满足

m ∥z∥2 ⩽ z⊤∇2f(x)z ⩽ M ∥z∥2

那么 BFGS 结合 Wolfe 线搜索的拟牛顿算法全局收敛到 f(x) 的极小值点 x∗

如果海瑟矩阵在 x∗ 处 Lip-连续, 则迭代点列 {xk} 为 Q-超线性收敛到 x∗
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例子

考虑极小化问题
min

x∈R100
c⊤x−

500∑
i=1

ln(bi − a⊤
i x)

牛顿法每次迭代的计算代价为 O(n3) 加上计算海瑟矩阵, 而 BFGS 方法的每
步计算代价仅为 O(n2), 因此 BFGS 算法可能更快取得最优解
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信赖域算法框架

在当前迭代点 xk 建立局部模型，求出最优解

dk = arg min
d

(gk)⊤d + d⊤Bd s.t. ∥d∥2 ≤ ∆k

更新模型信赖域的半径

模型足够好 ⇒ 增大半径
模型比较差 ⇒ 缩小半径
否则半径不变

对模型进行评价

好 ⇒ 子问题的解即下一个迭代点
差 ⇒ 迭代点不改变
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信赖域子问题

根据带拉格朗日余项的泰勒展开

f(xk + d) = f(xk) +∇f(xk)⊤d + 1
2

d⊤∇2f(xk + td)d

利用 f(x) 的二阶近似来刻画 f(x) 在点 xk 处的性质

mk(d) = f(xk) +∇f(xk)⊤d + 1
2

d⊤Bkd

由于泰勒展开的局部性, 需对上述模型添加信赖域约束

Ωk = {xk + d | ∥d∥ ⩽ ∆k}
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信赖域子问题

信赖域算法每一步都需要求解如下子问题

min
d∈Rn

mk(d) s.t. ∥d∥ ≤ ∆k (3)

dk
TR

dk
N

信赖域
f(x)

mk(d)
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模型近似程度好坏的的衡量

引入

ρk = f(xk)− f(xk + dk)
mk(0)−mk(dk)

(4)

函数值实际下降量与预估下降量（即二阶近似模型下降量）的比值

如果 ρk 接近 1，说明 mk(d) 来近似 f(x) 是比较成功的，则扩大 ∆k

如果 ρk 非常小甚至为负，说明过分地相信了二阶模型 mk(d)，则缩小 ∆k
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算法 5.4 信赖域算法

1 给定最大半径 ∆max，初始半径 ∆0，初始点 x0，k ← 0
2 给定参数 0 ≤ η < ρ̄1 < ρ̄2 < 1，γ1 < 1 < γ2
3 while 未达到停机准则 do
4 计算子问题 (3) 得到迭代方向 dk

5 根据 (4) 计算下降率 ρk

6 更新信赖域半径

∆k+1 =


γ1∆k, ρk < ρ̄1

min{γ2∆k, ∆max}, ρk > ρ̄2 以及 ∥dk∥ = ∆k

∆k, 其他

7 更新自变量

xk+1 =
{

xk + dk, ρk > η

xk, 其他
/* 只有下降比例足够大才更新 */

8 k ← k + 1
9 end while 53 / 69
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非线性最小二乘问题

考虑最小二乘问题

min
x

f(x) = 1
2

m∑
j=1

r2
j (x)

记 r(x) = (r1(x), r2(x), ..., rm(x))⊤, 问题可以表述为

min f(x) = 1
2
∥r(x)∥2

2

记 J(x) ∈ Rm×n 是向量值函数 r(x) 在点 x 处的雅可比矩阵

J(x) =


∇r1(x)⊤

∇r2(x)⊤

...
∇rm(x)⊤


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最小二乘问题

f(x) 的梯度和海瑟矩阵

∇f(x) =
m∑

j=1
rj(x)∇rj(x) = J(x)⊤r(x)

∇2f(x) =
m∑

j=1
∇rj(x)∇rj(x) +

m∑
i=1

ri(x)∇2ri(x)

= J(x)⊤J(x) +
m∑

i=1
ri(x)∇2ri(x)

小残差 ⇒ 高斯-牛顿方法和 Levenberg-Marquardt 方法

大残差 ⇒ 引入带结构的拟牛顿方法
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高斯-牛顿方法

使用近似 ∇2fk ≈ J⊤
k Jk, 省略 ∇2rj 的计算，减少了计算量

高斯-牛顿法的迭代方向 dGN
k 满足

J⊤
k JkdGN

k = −J⊤
k rk

另一种理解: 在点 xk 处，考虑近似 r(xk + d) ≈ rk + Jkd 得到

min
d

f(xk + d) = 1
2
∥r(xk + d)∥2 ≈ 1

2
∥rk + Jkd∥2

然后更新 xk+1 = xk + αkdk
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算法 5.9 高斯-牛顿方法

1 给定始值 x0，k ← 0
2 while 未达到停机准则 do
3 计算残差向量 rk，雅可比矩阵 Jk

4 求解线性最小二乘问题 mind
1
2∥rk + Jkd∥2 确定下降方向 dk

5 使用线搜索准则计算步长 αk

6 更新 xk+1 = xk + αkdk

7 k ← k + 1
8 end while
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Levenberg-Marquardt (LM) 方法

LM 方法本质为信赖域方法，更新方向为如下问题的解

min
d

1
2
∥Jkd + rk∥2 s.t. ∥d∥ ≤ ∆k (5)

将如下近似当作信赖域方法中的 mk

mk(d) = 1
2
∥rk∥2 + d⊤(Jk)⊤rk + 1

2
d⊤(Jk)⊤Jkd
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Levenberg-Marquardt 方法
1 给定最大半径 ∆max，初始半径 ∆0，初始点 x0，k ← 0
2 给定参数 0 ≤ η < ρ̄1 < ρ̄2 < 1，γ1 < 1 < γ2
3 while 未达到停机准则 do
4 计算子问题 (5) 得到迭代方向 dk

5 根据 (4) 计算下降率 ρk

6 更新信赖域半径

∆k+1 =


γ1∆k, ρk < ρ̄1

min{γ2∆k, ∆max}, ρk > ρ̄2 以及 ∥dk∥ = ∆k

∆k, 其他

7 更新自变量

xk+1 =
{

xk + dk, ρk > η

xk, 其他
/* 只有下降比例足够大才更新 */

8 k ← k + 1
9 end while 60 / 69



子问题 (3) 求解

推论 5.4 向量 d∗ 是信赖域子问题

min
d

1
2
∥Jd + r∥2 s.t. ∥d∥ ≤ ∆

的解当且仅当 d∗ 是可行解并且存在数 λ ≥ 0 使得

(J⊤J + λI)d∗ = −J⊤r

λ(∆− ∥d∗∥) = 0

实际上, (J⊤J + λI)d∗ = −J⊤r 是最小二乘问题的最优性条件

min
d

1
2

∥∥∥∥∥
[

J√
λI

]
p +

[
r
0

]∥∥∥∥∥
2

61 / 69



LMF 方法

信赖域型 LM 方法本质上是固定信赖域半径 ∆, 通过迭代寻找满足条件的乘
子 λ, 每一步迭代需要求解线性方程组

(J⊤J + λI)d = −J⊤r

LM 的更新基于 ∆，LMF 的更新直接基于 λ，每一步求解子问题

min
d

1
2
∥Jkd + rk∥2 s.t. ∥d∥ ≤ ∆

⇓
min

d
∥Jd + r∥2

2 + λ∥d∥2
2

调整 λ 的原则可以参考信赖域半径的调整原则
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算法 5.10 LMF 方法
1 给定初始点 x0，初始乘子 λ0，k ← 0
2 给定参数 0 ≤ η < ρ̄1 < ρ̄2 < 1，γ1 < 1 < γ2
3 while 未达到停机准则 do
4 求解 LM 方程 ((Jk)⊤Jk + λI)d = −(Jk)⊤rk 得到迭代方向 dk

5 根据 (4) 式计算下降率 ρk

6 更新信赖域半径

λk+1 =


γ2λk, ρk < ρ̄1

γ1λk, ρk > ρ̄2

λk, 其他

/* 扩大乘子（缩小信赖域半径）*/
/* 缩小乘子（扩大信赖域半径）*/

/* 乘子不变 */

7 更新自变量

xk+1 =
{

xk + dk, ρk > η

xk, 其他
/* 只有下降比例足够大才更新 */

8 k ← k + 1
9 end while 63 / 69



大残量问题的拟牛顿算法

大残量问题中，海瑟矩阵的第二部分不可忽视，此时高斯 – 牛顿法和 LM 方
法可能只有线性的收敛速度

∇2f(x) = J(x)⊤J(x) +
m∑

i=1
ri(x)∇2ri(x)

记 sk = xk+1 − xk，Tk+1 应保留原海瑟矩阵的性质

Tk+1sk ≈
m∑

j=1
rj(xk+1)(∇2rj(xk+1))sk

≈
m∑

j=1
rj(xk+1)(∇rj(xk+1)−∇rj(xk))

= (Jk+1)⊤rk+1 − (Jk)⊤rk+1
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大残量问题的拟牛顿算法

拟牛顿条件为
Tk+1sk = (Jk+1)⊤rk+1 − (Jk)⊤rk+1

Dennis, Gay 和 Welsch 给出的一种更新格式

Tk+1 = Tk + (y# − Tksk)y⊤ + y(y# − Tksk)⊤

y⊤sk

− (y# − Tksk)⊤sk

(y⊤s)2 yy⊤

其中
sk = xk+1 − xk

y = J⊤
k+1rk+1 − J⊤

k rk

y# = J⊤
k+1rk+1 − J⊤

k rk+1
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应用实例: 相位恢复

相位恢复是最小二乘法的重要应用, 原始模型为

min
z∈Cn

f(z) = 1
2

m∑
j=1

(|ā⊤
j z|2 − bj)2

其中 aj ∈ Cn 是已知的采样向量，bj ∈ R 是观测的模长

根据 Wirtinger 导数知

∇f(z) =
[

∂f

∂z
,
∂f

∂z̄

]∗

其中

∂f

∂z
=

m∑
j=1

(|ā⊤
j x|2 − bj)z̄⊤aj ā

⊤
j ,

∂f

∂z̄
=

m∑
j=1

(|ā⊤
j x|2 − bj)z⊤āja

⊤
j
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应用实例: 相位恢复

雅可比矩阵和高斯 – 牛顿矩阵分别为

J(z) =
[

a1(ā⊤
1 z), a2(ā⊤

2 z), · · · , am(ā⊤
mz)

ā1(a⊤
1 z̄), ā2(a⊤

2 z̄), · · · , ām(a⊤
mz̄)

]⊤

Ψ(z)J(z)⊤
J(z) =

m∑
j=1

[
|ā⊤

j z|2aj ā
⊤
j (ā⊤

j z)2aja
⊤
j

(ā⊤
j z)2āj ā

⊤
j |ā⊤

j z|2āja
⊤
j

]

在第 k 步，高斯 – 牛顿法求解方程

Ψ(zk)dk = −∇f(zk)
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应用实例: 相位恢复

LM 方法求解正则化方程

(Ψ(zk) + λk)dk = −∇f(zk) (6)

选取

λk =

70000n
√

nf(zk), f(zk) ≥ 1
900n
∥zk∥2

2√
f(zk), 其他

利用共轭梯度法求解线性方程 (6)，使得

∥(Ψ(zk) + λk)dk +∇f(zk)∥ ≤ ηk∥∇f(zk)∥
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应用实例: 相位恢复

WF 求解 Wirtinger 梯度下降方法

LM ILM1 (ηk = 0.1), ILM2 (ηk = min{0.1, ∥∇f(zk)∥}), Nes (Nesterov 加速)
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Q&A
Thank you!
感谢您的聆听和反馈


