
第七章 复合优化算法

修贤超

https://xianchaoxiu.github.io

https://xianchaoxiu.github.io

目录

7.1 近似点梯度法

7.2 Nesterov 加速算法

7.3 近似点算法

7.4 分块坐标下降法

7.5 对偶算法

7.6 交替方向乘子法

7.7 随机优化算法

1 / 110

邻近算子

考虑如下复合优化问题

min
x∈Rn

ψ(x) = f(x) + h(x)

f(x) 为可微函数 (可能非凸)
h(x) 可能为不可微函数

定义 7.1 对于一个凸函数 h，定义邻近算子为

proxh(x) = arg min
u

{
h(u) + 1

2
∥u− x∥2

2

}
定理 7.1 如果 h 为闭凸函数，则对任意 x 有 proxh(x) 存在且唯一

2 / 110

邻近算子

定理 7.2 若 h 是适当的闭凸函数, 则
u = proxh(x) ⇔ x− u ∈ ∂h(u)

证明 若 u = proxh(x), 则由最优性条件得 0 ∈ ∂h(u) + (u− x), 因此
x− u ∈ ∂h(u). 反之，若 x− u ∈ ∂h(u) 则由次梯度的定义可得到

h(v) ⩾ h(u) + (x− u)⊤(v − u), ∀v ∈ dom h

两边同时加 1
2∥v − x∥

2, 即有

h(v) + 1
2
∥v − x∥2 ⩾ h(u) + (x− u)⊤(v − u) + 1

2
∥(v − u)− (x− u)∥2

⩾ h(u) + 1
2
∥u− x∥2, ∀v ∈ dom h

根据定义可得 u = proxh(x)
3 / 110

例 7.1

给定 ℓ1 范数 h(x) = t∥x∥1, 则 proxth(x) = sign(x) max{|x| − t, 0}

证明 邻近算子 u = proxth(x) 的最优性条件为

x− u ∈ t∂∥u∥1 =


{t}, u > 0
[−t, t], u = 0
{−t}, u < 0

⇓

u =


x− t, x > t

x+ t, x < −t
0, x ∈ [−t, t]

4 / 110

例 7.1

给定 ℓ2 范数 h(x) = t∥x∥2, 则 proxth(x) =
{

(1− t
∥x∥2

)x, ∥x∥2 ⩾ t

0, 其他

证明 邻近算子 u = proxth(x) 的最优性条件为

x− u ∈ t∂∥u∥2 =

{
tu

∥u∥2
}, u ̸= 0

{w : ∥w∥2 ⩽ t}, u = 0

⇓

u =

x−
tx

∥x∥2
, ∥x∥2 > t

0, ∥x∥2 ⩽ t

5 / 110

例 7.2

邻近算子的计算规则

变量的常数倍放缩以及平移 (λ ̸= 0)

h(x) = g(λx+ a), proxh(x) = 1
λ

(
proxλ2g(λx+ a)− a

)
函数（及变量）的常数倍放缩 (λ > 0)

h(x) = λg
(
x

λ

)
, proxh(x) = λproxλ−1g

(
x

λ

)
加上线性函数

h(x) = g(x) + a⊤x, proxh(x) = proxg(x− a)

6 / 110

例 7.2

加上二次项 (u > 0)

h(x) = g(x) + u

2
∥x− a∥2

2, proxh(x) = proxθg(θx+ (1− θ)a)

其中 θ = 1
1+u

向量函数

h

([
x
y

])
= φ1(x) + φ2(y), proxh

([
x
y

])
=
[

proxφ1(x)
proxφ2(y)

]

7 / 110

例 7.3

设 C 为闭凸集，则示性函数 IC 的邻近算子为点 x 到 C 的投影 PC(x)

proxIC
(x) = arg min

u

{
IC(u) + 1

2
∥u− x∥2

}
= arg min

u∈C
∥u− x∥2

= PC(x)

几何意义
u = PC(x) ⇔ (x− u)⊤(z − u) ⩽ 0, ∀z ∈ C

8 / 110

近似点梯度法

考虑复合优化问题
min
x∈Rn

ψ(x) = f(x) + h(x)

对于光滑部分 f 做梯度下降，对于非光滑部分 h 使用邻近算子

==========

算法 7.1 近似点梯度法
1 给定函数 f(x), h(x), 初始点 x0

2 while 未达到收敛准则 do
3 xk+1 = proxtkh(xk − tk∇f(xk))
4 end while

9 / 110

对近似点梯度法的理解

把迭代公式展开
xk+1 = proxtkh(x

k − tk∇f(xk))

⇓

xk+1 = arg min
u

{
h(u) + 1

2tk
∥u− xk + tk∇f(xk)∥2

}
= arg min

u

{
h(u) + f(xk) +∇f(xk)⊤(u− xk) + 1

2tk
∥u− xk∥2

}
根据邻近算子与次梯度的关系, 可改写为

xk+1 = xk − tk∇f(xk)− tkgk, gk ∈ ∂h(xk+1)

对光滑部分做显式的梯度下降，对非光滑部分做隐式的梯度下降

10 / 110

步长选取

当 f 为梯度 L-利普希茨连续函数时，可取固定步长 tk = t ⩽ 1
L

当 L 未知时可使用线搜索准则

f(xk+1) ⩽ f(xk) +∇f(xk)⊤(xk+1 − xk) + 1
2tk
∥xk+1 − xk∥2

BB 步长

可构造如下适用于近似点梯度法的非单调线搜索准则

ψ(xk+1) ≤ Ck − c1

2tk
∥xk+1 − xk∥2

11 / 110

应用举例: LASSO 问题

考虑用近似点梯度法求解 LASSO 问题

min
x

µ∥x∥1 + 1
2
∥Ax− b∥2

令 f(x) = 1
2∥Ax− b∥

2, h(x) = µ∥x∥1, 则

∇f(x) = A⊤(Ax− b)
proxtkh(x) = sign(x) max {|x| − tkµ, 0}

相应的迭代格式为

yk = xk − tkA⊤(Axk − b)
xk+1 = sign(yk) max{|yk| − tkµ, 0}

即第一步做梯度下降，第二步做收缩
12 / 110

应用举例: LASSO 问题

使用 BB 步长加速收敛

0 50 100 150 200 250 300 350 400
10

-10

10
-5

10
0

10
5

10
10

13 / 110

应用举例: 低秩矩阵恢复

考虑低秩矩阵恢复模型

min
X∈Rm×n

µ∥X∥∗ + 1
2
∑

(i,j)∈Ω
(Xij −Mij)2

令
f(X) = 1

2
∑

(i,j)∈Ω
(Xij −Mij)2 , h(X) = µ∥X∥∗

定义矩阵

Pij =
{

1, (i, j) ∈ Ω
0, 其他

则
f(X) = 1

2
∥P ⊙ (X −M)∥2

F

14 / 110

应用举例: 低秩矩阵恢复

进一步可以得到

∇f(X) = P ⊙ (X −M)
proxtkh(X) = UDiag(max{|d| − tkµ, 0})V ⊤

得到近似点梯度法的迭代格式

Y k = Xk − tkP ⊙ (Xk −M)
Xk+1 = proxtkh(Y

k)

15 / 110

收敛性分析

假设 7.1 为了保证近似点梯度算法的收敛性
f 在 Rn 上是凸的; ∇f 为 L-利普希茨连续，即

∥∇f(x)−∇f(y)∥ ⩽ L∥x− y∥, ∀x, y

h 是适当的闭凸函数

函数 ψ(x) = f(x) + h(x) 的最小值 ψ∗ 是有限的，并且在点 x∗ 处取到

定理 7.3 在假设 7.1 下，取定步长为 tk = t ∈ (0, 1
L

], 设 {xk} 为迭代产生序
列，则

ψ(xk)− ψ∗ ⩽ 1
2kt
∥x0 − x∗∥2

16 / 110

目录

7.1 近似点梯度法

7.2 Nesterov 加速算法

7.3 近似点算法

7.4 分块坐标下降法

7.5 对偶算法

7.6 交替方向乘子法

7.7 随机优化算法

17 / 110

典型问题形式

考虑如下复合优化问题

min
x∈Rn

ψ(x) = f(x) + h(x)

f(x) 是连续可微的凸函数，且梯度是利普西茨连续的

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

h(x) 是适当的闭凸函数，且邻近算子

proxh(x) = arg min
u∈domh

{h(u) + 1
2
∥x− u∥2}

步长取常数 tk = 1/L 时，近似点梯度法的收敛速度为 O(1/k)

18 / 110

Nesterov 加速算法简史

Nesterov 在 1983、1988、2005 提出了三种改进的一阶算法，收敛速度 O
(

1
k2

)
Beck 和 Teboulle 在 2008 年提出了 FISTA 算法, 第一步沿着前两步的计算方
向计算一个新点，第二步在该新点处做一步近似点梯度迭代

xk−2 xk−1 yk

xk = proxtkh
(yk − tk∇f(yk))

19 / 110

Nesterov 加速算法简史

20 / 110

FISTA 算法

算法 7.1 近似点梯度法
1 给定函数 f(x), h(x), 初始点 x0

2 while 未达到收敛准则 do
3 xk+1 = proxtkh(xk − tk∇f(xk))
4 end while

==========

算法 7.2 FISTA 算法
1 输入x0 = x−1 ∈ Rn, k ← 1
2 while 未达到收敛准则 do
3 计算 yk = xk−1 + k−2

k+1(xk−1 − xk−2)
4 选取 tk = t ∈ (0, 1/L], 计算 xk = proxtkh(yk − tk∇f(yk))
5 k ← k + 1
6 end while

21 / 110

FISTA 的等价形式

算法 7.3 FISTA 算法的等价变形
1 输入v0 = x0 ∈ Rn, k ← 1
2 while 未达到收敛准则 do
3 计算 yk = (1− γk)xk−1 + γkv

k−1

4 选取 tk, 计算 xk = proxtkh(yk − tk∇f(yk))
5 计算 vk = xk−1 + 1

γk
(xk − xk−1)

6 k ← k + 1
7 end while

22 / 110

第二类 Nesterov 加速算法

第二类 Nesterov 加速算法
zk = (1− γk)xk−1 + γky

k−1

yk = prox(tk/γk)h

(
yk−1 − tk

γk
∇f(zk)

)
xk = (1− γk)xk−1 + γky

k

三个序列 {xk}，{yk} 和 {zk} 都可以保证在定义域内

yk−1 xk−1zk

yk = prox(tk/γk)h
(yk−1 − (tk/γk)∇f(zk))

xk

23 / 110

第三类 Nesterov 加速算法

第三类 Nesterov 加速算法

zk = (1− γk)xk−1 + γky
k−1

yk = prox(tk
∑k

i=1 1/γi)h

(
−tk

k∑
i=1

1
γi
∇f(zi)

)
xk = (1− γk)xk−1 + γky

k

计算 yk 时需要利用全部已有的 {∇f(zi)}, i = 1, 2, · · · , k

取 γk = 2
k+1，tk = 1

L
时，也有 O

(
1
k2

)
的收敛速度

24 / 110

针对非凸问题的 Nesterov 加速算法

考虑 f(x) 是非凸函数，但可微且梯度是利普希茨连续

非凸复合优化问题的加速梯度法框架

zk = γky
k−1 + (1− γk)xk−1

yk = proxλkh
(yk−1 − λk∇f(zk))

xk = proxtkh(z
k − tk∇f(zk))

当 λk 和 tk 取特定值时，它等价于第二类 Nesterov 加速算法

当 f 为凸函数，收敛速度为 O
(

1
k2

)
当 f 为非凸函数，收敛速度为 O

(
1
k

)

25 / 110

应用举例: LASSO 问题求解

考虑 LASSO 问题
min
x

1
2
∥Ax− b∥2

2 + µ∥x∥1

FISTA 算法可以由下面的迭代格式给出

yk = xk−1 + k − 2
k + 1

(xk−1 − xk−2)

wk = yk − tkA⊤(Ayk − b)
xk = sign(wk) max{|wk| − tkµ, 0}

26 / 110

应用举例: LASSO 问题求解

取 µ = 10−3，步长 t = 1
L
，其中 L = λmax(A⊤A)

0 50 100 150 200 250 300 350 400
10

-10

10
-5

10
0

10
5

10
10

27 / 110

收敛性分析

定理 7.5 在假设 7.1 下，当用 FISTA 算法求解凸复合优化问题时，若取固定
步长 tk = 1/L，则

ψ(xk)− ψ(x∗) ≤ 2L
(k + 1)2∥x

0 − x∗∥2

推论 7.1 在假设 7.1 下，当用 FISTA 算法求解凸复合优化问题时，若迭代点
xk, yk，步长 tk 以及组合系数 γk 满足一定条件，则

ψ(xk)− ψ(x∗) ≤ C

k2

其中 C 仅与函数 f 和初始点 x0 的选取有关

采用线搜索的 FISTA 算法具有 O
(

1
k2

)
的收敛速度

28 / 110

目录

7.1 近似点梯度法

7.2 Nesterov 加速算法

7.3 近似点算法

7.4 分块坐标下降法

7.5 对偶算法

7.6 交替方向乘子法

7.7 随机优化算法

29 / 110

近似点算法

考虑一般形式的优化问题
min
x

ψ(x)

ψ 是一个适当的闭凸函数，并不要求连续或可微

次梯度法求解收敛较慢，且收敛条件苛刻

近似点梯度法做隐性的梯度下降

xk+1 = proxtkψ(xk)

= arg min
u

{
ψ(u) + 1

2tk
∥u− xk∥2

2

}

ψ(x) 的邻近算子一般需要通过迭代求解
目标函数强凸，相比原问题更利于迭代法的求解

30 / 110

FISTA 算法加速

用 FISTA 算法对近似点算法进行加速，其迭代格式为
xk+1 = proxtkψ(xk)

⇓

xk = proxtkψ
(
xk−1 + γk

1− γk−1

γk−1
(xk−1 − xk−2)

)

xk−2 xk−1 yk

xk = proxtkh
(yk − tk∇f(yk))

31 / 110

FISTA 算法加速

第二类 Nesterov 加速算法的迭代格式可以写成

vk = prox(tk/γk)ψ(vk−1), xk = (1− γk)xk−1 + γkv
k

关于算法参数的选择有两种策略

固定步长 tk = t 以及 γk = 2
k+1

可变步长 tk, 当 k = 1 时取 γ1 = 1; 当 k > 1 时,γk 来自

(1− γk) tk
γ2
k

= tk−1

γ2
k−1

32 / 110

与增广拉格朗日函数法的关系

考虑具有如下形式的优化问题

min
x∈Rn

f(x) + h(Ax)

例 7.4 一些常见例子
当 h 是单点集 {b} 的示性函数时，等价于线性等式约束优化问题

min
x∈Rn

f(x) s.t. Ax = b

当 h 是凸集 C 上的示性函数时，等价于凸集约束问题

min f(x) s.t. Ax ∈ C

当 h(y) = ∥y − b∥ 时，等价于正则优化问题

min f(x) + ∥Ax− b∥
33 / 110

对偶问题

原问题的增广拉格朗日函数法

(xk+1, yk+1) = argmin
x,y

{
f(x) + h(y) + tk

2
∥Ax− y + zk/tk∥2

2

}
zk+1 = zk + tk(Axk+1k − yk+1)

对偶问题

max ψ(z) = inf
x,y

L(x, y, z) = −f ∗(−A⊤z)− h∗(z)

近似点算法

zk+1 = proxtψ(zk) = arg min
z

{
f ∗(−A⊤z) + h∗(z) + 1

2tk
∥z − zk∥2

2

}
原问题用增广拉格朗日函数法 ⇔ 对偶问题用近似点算法

34 / 110

应用举例: LASSO 问题

考虑 LASSO 问题

min
x∈Rn

ψ(x) = µ∥x∥1 + 1
2
∥Ax− b∥2

2

引入变量 y = Ax− b，等价地转化为

min
x,y

f(x, y) = µ∥x∥1 + 1
2
∥y∥2

2 s.t. Ax− y − b = 0

采用近似点算法进行求解，第 k 步迭代为

(xk+1, yk+1) ≈ arg min
(x,y)∈D

{
f(x, y) + 1

2tk
(∥x− xk∥2

2 + ∥y − yk∥2
2)
}

其中 D = {(x, y) | Ax− y = b} 为可行域，tk 为步长
35 / 110

应用举例: LASSO 问题

除了直接求解，还可以通过对偶问题求解

引入拉格朗日乘子 z，对偶函数为

Φk(z) = inf
x

{
µ∥x∥1 + z⊤Ax+ 1

2tk
∥x− xk∥2

2

}
+ inf

y

{1
2
∥y∥2

2 − z⊤y + 1
2tk
∥y − yk∥2

2

}
− b⊤z

=µΓµtk(xk − tkA⊤z)− 1
2tk

(
∥xk − tkA⊤z∥2

2 − ∥xk∥2
2

)
− 1

2(tk + 1)
(∥z∥2

2 + 2(yk)⊤z − ∥yk∥2
2)− b⊤z

其中

Γµtk(u) = inf
x

{
∥x∥1 + 1

2µtk
∥x− u∥2

2

}
36 / 110

应用举例: LASSO 问题

记函数 qµtk : R→ R 为

qµtk(v) =


v2

2µtk
, |v| ≤ t

|v| − µtk
2 , |v| > t

易知 Γµtk(u) = ∑m
i=1 qµtk(ui) 是关于 u 的连续可微函数且导数为

∇uΓµtk(u) = u− proxµtk∥x∥1(u)

对偶问题为
min
z

Φk(z)

37 / 110

应用举例: LASSO 问题

设对偶问题的逼近最优解为 zk+1，根据最优性条件有
xk+1 = proxµtk∥x∥1(xk − tkAT zk+1)

yk+1 = 1
tk + 1

(yk + tkz
k+1)

在第 k 步迭代，LASSO 问题的近似点算法的迭代格式

zk+1 ≈ arg max
z

Φk(z)

xk+1 = proxµtk∥x∥1(xk − tkA⊤zk+1)

yk+1 = 1
tk + 1

(yk + tkz
k+1)

根据 Φk(z) 的连续可微性，可以调用梯度法进行求解
38 / 110

收敛性分析

定理 7.6 设 ψ 是闭凸函数, 最优值 ψ∗ 有限且在 x∗ 取到, 则对近似点算法有

ψ(xk)− ψ∗ ≤ ||x
(0) − x∗||22

2∑k
i=1 ti

, ∀ k ≥ 1

若
k∑
i=1

ti →∞，则算法收敛

若 ti 固定或在一个正下界以上变化，则收敛速率为 O(1
k
)

虽然 ti 可以任意选取，邻近算子的计算代价依赖于 ti

39 / 110

加速版本的收敛性分析

定理 7.7 设 ψ 是闭凸函数, 最优值 ψ∗ 有限且在 x∗ 处取到. 假设参数 tk, γk
按照 Nesterov 加速策略选取，那么

ψ(xk)− ψ∗ ≤ 2||x(0) − x∗||22
(2
√
t1 +∑k

i=2
√
ti)2 , k ≥ 1

若
k∑
i=2

√
ti →∞，则保证收敛

步长 ti 取固定值或有正下界时，其收敛速度可达到 O
(

1
k2

)

40 / 110

目录

7.1 近似点梯度法

7.2 Nesterov 加速算法

7.3 近似点算法

7.4 分块坐标下降法

7.5 对偶算法

7.6 交替方向乘子法

7.7 随机优化算法

41 / 110

问题形式

考虑具有如下形式的问题

min
x∈X

F (x1, x2, · · · , xs) = f(x1, x2, · · · , xs) +
s∑
i=1

ri(xi)

f 是关于 x 的可微函数，但不一定凸

ri(xi) 关于 xi 是适当的闭凸函数，但不一定可微

挑战和难点

在非凸问题上，很多针对凸问题设计的算法通常会失效

目标函数的整体结构十分复杂，变量的更新需要很大计算量

42 / 110

问题形式

例 7.5 设参数 x = (x1, x2, · · · , xG) ∈ Rp，分组 LASSO 模型

min
x

1
2n
∥b− Ax∥2

2 + λ
G∑
i=1

√
pi∥xi∥2

例 7.6 设 b ∈ Rm 是已知的观测向量，低秩矩阵恢复模型

min
X,Y

1
2
∥A(XY)− b∥2

2 + α∥X∥2
F + β∥Y ∥2

F

例 7.7 设 M ∈ Rm×n 是已知的矩阵，非负矩阵分解模型

min
X,Y≥0

1
2
∥XY −M∥2

F + αr1(X) + βr2(Y)

43 / 110

变量更新方式

按照 x1, x2, · · · , xs 的次序依次固定其他 (s− 1) 块变量极小化 F

辅助函数
fki (xi) = f(xk1, · · · , xki−1, xi, x

k−1
i+1 , · · · , xk−1

s)

在每一步更新中，通常使用以下三种更新格式之一

xki = arg min
xi∈X k

i

{
fki (xi) + ri(xi)

}
(1)

xki = arg min
xi∈X k

i

{
fki (xi) + Lk−1

i

2
∥xi − xk−1

i ∥2
2 + ri(xi)

}
(2)

xki = arg min
xi∈X k

i

{
⟨ĝki , xi − x̂k−1

i ⟩+ Lk−1
i

2
∥xi − x̂k−1

i ∥2
2 + ri(xi)

}
(3)

44 / 110

算法格式

算法 7.9 分块坐标下降法
1 选择两组初始点 (x−1

1 , x−1
2 , · · · , x−1

s) = (x0
1, x0

2, · · · , x0
s)

2 for k = 1, 2, · · · do
3 for i = 1, 2, · · · do
4 使用格式 (1)、(2)、(3) 更新 xki
5 end for
6 if 满足停机条件 then
7 返回 (xk1, xk2, · · · , xks)，算法终止
8 end if
9 end for

45 / 110

算法格式

BCD 算法的子问题可采用三种不同的更新格式，这三种格式可能会产生不同
的迭代序列，可能会收敛到不同的解，数值表现也不相同

格式 (1) 是最直接的更新方式，保证整个迭代过程的目标函数值是下降的．
然而由于 f 的形式复杂，子问题求解难度较大

在收敛性方面，格式 (1) 在强凸问题上可保证目标函数收敛到极小值，但在
非凸问题上不一定收敛

xki = arg min
xi∈X k

i

{
fki (xi) + ri(xi)

}

46 / 110

算法格式

格式 (2) (3) 是对格式 (1) 的修正，不保证迭代过程目标函数的单调性，但可
以改善收敛性结果．

格式 (3) 实质上为目标函数的一阶泰勒展开近似，在一些测试问题上有更好
的表现，可能的原因是使用一阶近似可以避开一些局部极小值点

格式 (3) 的计算量很小，比较容易实现

xki = arg min
xi∈X k

i

{
fki (xi) + ri(xi)

}

xki = arg min
xi∈X k

i

{
fki (xi) + Lk−1

i

2
∥xi − xk−1

i ∥2
2 + ri(xi)

}

xki = arg min
xi∈X k

i

{
⟨ĝki , xi − x̂k−1

i ⟩+ Lk−1
i

2
∥xi − x̂k−1

i ∥2
2 + ri(xi)

}
47 / 110

例 7.8

考虑二元二次函数的优化问题

min f(x, y) = x2 − 2xy + 10y2 − 4x− 20y
采用格式 (1) 的分块坐标下降法

xk+1 = 2 + yk yk+1 = 1 + xk+1

10
初始点为 (x, y) = (0.5, 0.2) 时的迭代点轨迹

0 2 4 6

1

2

48 / 110

不收敛反例

考虑

F (x1, x2, x3) = −x1x2 − x2x3 − x3x1 +
3∑
i=1

[(xi − 1)2
+ + (−xi − 1)2

+]

设 ε > 0，初始点取为

x0 =
(
−1− ε, 1 + ε

2
,−1− ε

4

)
容易验证迭代序列满足

xk = (−1)k · (−1, 1,−1) + (−1
8

)k ·
(
−ε, ε

2
,−ε

4

)
迭代序列有两个聚点 (−1, 1,−1) 与 (1,−1, 1)，但都不是 F 的稳定点

49 / 110

应用举例: LASSO 问题求解

使用分块坐标下降法来求解 LASSO 问题

min
x

µ∥x∥1 + 1
2
∥Ax− b∥2

将自变量 x 记为 x = [xi x̄⊤
i]⊤, 矩阵 A 记为 A = [ai Āi]

应用格式 (1), 替换 ci = b− Āix̄i，原问题等价于

min
xi

fi(xi) = µ|xi|+
1
2
∥ai∥2xi

2 − a⊤
i cixi

可直接写出最小值点

xki = arg min
xi

fi(xi) =


a⊤

i ci−µi

∥ai∥2 , a⊤
i ci > µ

a⊤
i ci+µi

∥ai∥2 , a⊤
i ci < −µ

0, 其他

50 / 110

应用举例: 非负矩阵分解

考虑最基本的非负矩阵分解问题

min
X,Y≥0

f(X,Y) = 1
2
∥XY −M∥2

F

计算梯度
∂f

∂X
= (XY −M)Y ⊤,

∂f

∂Y
= X⊤(XY −M)

应用格式 (3)，当 ri(X) 为凸集示性函数时，得到

Xk+1 = max{Xk − txk(XkY k −M)(Y k)⊤, 0}
Y k+1 = max{Y k − tyk(Xk)⊤(XkY k −M), 0}

51 / 110

目录

7.1 近似点梯度法

7.2 Nesterov 加速算法

7.3 近似点算法

7.4 分块坐标下降法

7.5 对偶算法

7.6 交替方向乘子法

7.7 随机优化算法

52 / 110

对偶问题

设 f，h 是闭凸函数，考虑复合优化问题

(P) min
x∈Rn

ψ(x) = f(x) + h(Ax)

引入新变量 y = Ax，考虑问题

min
x∈Rn

ψ(x) = f(x) + h(y) s.t. Ax = y

拉格朗日函数为

L(x, y, z) = f(x) + g(y) + z⊤(Ax− y)

对偶问题
(D) max

z
ϕ(z) = −f ∗(−A⊤z)− h∗(z)

53 / 110

强凸函数共轭函数的性质

引理 7.1 设 f(x) 是适当且闭的强凸函数，强凸参数为 µ > 0，则 f ∗(y) 在全
空间 Rn 上有定义，f ∗(y) 是梯度 1

µ
-利普希茨连续的可微函数

考虑在对偶问题上应用近似点梯度算法，每次迭代更新如下

zk+1 = proxth∗(zk + tA∇f ∗(−A⊤zk))

引入变量 xk+1 = ∇f ∗(−A⊤zk)，利用共轭函数性质知 −A⊤zk ∈ ∂f(xk+1), 则
迭代格式等价于

xk+1 = arg min
x
{f(x) + (A⊤zk)⊤x}

zk+1 = proxth∗(zk + tAxk+1)

54 / 110

Moreau 分解

引理 7.2 设 f 是定义在 Rn 上的适当的闭凸函数，则对任意的 x ∈ Rn 有

x = proxf (x) + proxf∗(x)

⇓

x = proxλf (x) + λproxλ−1f∗

(
x

λ

)
对任意的闭凸函数 f，空间 Rn 上的恒等映射总可以分解成两个函数 f 与 f ∗

邻近算子的和

55 / 110

交替极小的解释

取 λ = t, f = h∗，并注意到 h∗∗ = h，有

zk + tAxk+1 = proxth∗(zk + tAxk+1) + tproxt−1h

(
zk

t
+ Axk+1

)

= zk+1 + tproxt−1h

(
zk

t
+ Axk+1

)
对偶近似点梯度法等价的针对原始问题的更新格式

xk+1 = arg min
x

{
f(x) + (zk)⊤Ax

}
yk+1 = proxt−1h

(
zk

t
+ Axk+1

)

= arg min
y

{
h(y)− (zk)⊤(y − Axk+1) + t

2
∥Axk+1 − y∥2

2

}
zk+1 = zk + t(Axk+1 − yk+1)

56 / 110

交替极小方法

考虑等价问题
min
x,y

f(x) + h(y) s.t. y = Ax

定义拉格朗日函数和增广拉格朗日函数
L(x, y, z) = f(x) + h(y)− z⊤(y − Ax)

Lt(x, y, z) = f(x) + h(y)− z⊤(y − Ax) + t

2
∥y − Ax∥2

等价的交替极小格式是
xk+1 = arg min

x
L(x, yk, zk)

yk+1 = arg min
y
Lt(xk+1, y, zk)

zk+1 = zk + t(Axk+1 − yk+1)
对偶近似点梯度法等价于对原始约束问题使用交替极小化方法

57 / 110

例 7.9

假设 f 是强凸函数，∥ · ∥ 是任意一种范数，考虑
min f(x) + ∥Ax− b∥

引入约束 y = Ax, 对应原始问题有 h(y) = ∥y − b∥, 共轭函数为

h∗(z) =

b⊤z ∥z∥∗ ≤ 1
+∞ 其他

proxth∗(x) = P∥z∥∗≤1(x− tb)

从而对偶问题为
max

∥z∥∗≤1
−f ∗(−A⊤z)− b⊤z

应用对偶近似点梯度法，更新如下

xk+1 = arg min
x

{
f(x) + (A⊤zk)⊤x

}
zk+1 = P∥z∥∗≤1(zk + t(Axk+1 − b))

58 / 110

例 7.9

考虑等价问题
min
x,y

f(x) + ∥y∥ s.t. Ax− b = y

交替极小化格式

xk+1 = arg min
x

f(x) + ∥yk∥+ (zk)⊤(Ax− b− yk)

yk+1 = arg min
y

f(xk+1) + ∥y∥+ (zk)⊤(Axk+1 − b− y) + t

2
∥Axk+1 − b− y∥2

2

zk+1 = zk + t(Axk+1 − b− yk+1)

59 / 110

例 7.10

假设 f 是强凸函数，考虑

min f(x) +
p∑
i=1
∥Bix∥2

根据 ∥ · ∥2 的共轭函数定义，对偶问题

max
∥zi∥2≤1

−f ∗
(
−

p∑
i=1

B⊤
i zi

)

记 Ci 是 Rmi 中的单位欧几里得球，对偶近似点梯度法更新如下

xk+1 = arg min
x

{
f(x) + (

p∑
i=1

B⊤
i zi)⊤x

}
zk+1
i = PCi

(zki + tBix
k+1), i = 1, 2, · · · , p

60 / 110

例 7.11

假设 f 是强凸函数，集合 Ci 为闭凸集，且易于计算投影，考虑

min f(x)
s.t. x ∈ C1 ∩ C2 ∩ · · · ∩ Cm

令 h(y1, y2, · · · , ym) =
m∑
i=1

ICi
(yi)，A = [I I · · · I]⊤

对偶问题

max
zi∈Ci

−f ∗
(
−

m∑
i=1

zi

)
−

m∑
i=1

I∗
Ci

(zi),

I∗
Ci

(zi) 是集合 Ci 的支撑函数，其显式表达式不易求出

61 / 110

例 7.11

利用 Moreau 分解将迭代格式写成交替极小化方法的形式

xk+1 = arg min
x

f(x) +
(

m∑
i=1

zi

)⊤

x


yk+1
i = PCi

(
zki
t

+ xk+1
)
, i = 1, 2, · · · ,m

zk+1
i = zki + t(xk+1 − yk+1

i), i = 1, 2, · · · ,m

62 / 110

例 7.12

假设 fi 是强凸函数，h∗
i 有易于计算的邻近算子．考虑

min
n∑
j=1

fj(xj) +
m∑
i=1

hi(Ai1x1 + Ai2x2 + · · ·+ AinxN)

对偶问题

max −
m∑
i=1

h∗
i (zi)−

n∑
j=1

f ∗
j (−A⊤

1jz1 − A⊤
2jz2 − · · · − A⊤

mjzm)

对偶近似点梯度法更新如下

xk+1
j = arg min

xj

{
fj(xj) + (

m∑
i=1

Aijz
k
i)⊤xj

}
, j = 1, 2, · · · , n

zk+1
i =proxth∗

i

zi + t
n∑
j=1

Aijx
k+1
j

 , i = 1, 2, · · · ,m

63 / 110

鞍点问题

令 f, h 是适当的闭凸函数. 考虑原始问题

min f(x) + h(Ax)

由于 h 有自共轭性，将问题变形为

(LPD) min
x

max
z

ψPD(x, z) = f(x)− h∗(z) + z⊤Ax

另一种常用的鞍点问题定义方式构造拉格朗日函数

min
x∈Rn,y∈Rm

f(x) + h(y) s.t. y = Ax

相应的鞍点问题形式如下

(LP) min
x,y

max
z

f(x) + h(y) + z⊤(Ax− y)

64 / 110

PDHG 算法

PDHG 算法的思想就是分别对两类变量应用近似点梯度算法

交替更新原始变量以及对偶变量，迭代格式如下

zk+1 = arg max
z

{
−h∗(z) + ⟨Axk, z − zk⟩ − 1

2δk
∥z − zk∥2

2

}
= proxδkh∗(zk + δkAx

k)

xk+1 = arg min
x

{
f(x) + (zk+1)⊤A(x− xk) + 1

2αk
∥x− xk∥2

2

}
= proxαkf

(xk − αkA⊤zk+1)

原始变量和对偶变量的更新顺序是无关紧要的

65 / 110

Chambolle-Pock 算法

PDHG 算法的收敛性需要比较强的条件，有些情形下未必收敛

Chambolle-Pock 算法与 PDHG 算法的区别在于多了一个外推步

具体的迭代格式如下

zk+1 = proxδkh∗(zk + δkAy
k)

xk+1 = proxαkf
(xk − αkA⊤zk+1)

yk+1 = 2xk+1 − xk

当取常数步长 αk = t, δk = s 时，收敛性在
√
st < 1

∥A∥2
的条件下成立

66 / 110

应用举例: LASSO 问题求解

考虑 LASSO 问题

min
x∈Rn

ψ(x) = µ∥x∥1 + 1
2
∥Ax− b∥2

2

取 f(x) = µ∥x∥1 和 h(x) = 1
2∥x− b∥

2
2，相应的鞍点问题

min
x∈Rn

max
z∈Rm

f(x)− h∗(z) + z⊤Ax

根据共轭函数的定义

h∗(z) = sup
y∈Rm

{
y⊤z − 1

2
∥y − b∥2

2

}
= 1

2
∥z∥2

2 + b⊤z

应用 PDHG 算法, xk+1 和 zk+1 的更新格式分别为

zk+1 = proxδkh∗(zk + δkAx
k) = 1

δk + 1
(
zk + δkAx

k − δkb
)

xk+1 = proxαkµ∥·∥1(xk − αkA⊤zk+1)
67 / 110

LASSO 问题求解

Chambolle-Pock 算法格式为

zk+1 = 1
δk + 1

(zk + δkAy
k − δkb)

xk+1 = proxαkµ∥·∥1(xk − αkA⊤zk+1)
yk+1 = 2xk+1 − xk

0 500 1000 1500 2000
10

-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

PDHG

Chambolle-Pock

68 / 110

TV-L1 模型

考虑去噪情形下的 TV-L1 模型

min
U∈Rn×n

∥U∥TV + λ∥U −B∥1

对任意的 W,V ∈ Rn×n×2，记

∥W∥ =
∑

1≤i,j≤n
∥wij∥2, ⟨W,V ⟩ =

∑
1≤i,j≤n,1≤k≤2

wi,j,kvi,j,k

利用 ∥ · ∥ 的定义，有
∥U∥TV = ∥DU∥

取 D 为相应的线性算子，并取

f(U) = λ∥U −B∥1, U ∈ Rn×n, h(W) = ∥W∥, W ∈ Rn×n×2

69 / 110

TV-L1 模型

相应的鞍点问题如下

(LPD) min
U∈Rn×n

max
V ∈Rn×n×2

f(U)− h∗(V) + ⟨V,DU⟩

根据共轭函数的定义

h∗(V) = sup
U∈Rn×n×2

{⟨U, V ⟩ − ∥U∥} =

0, max
i,j
∥vij∥2 ≤ 1

+∞, 其他

记 V = {V ∈ Rn×n×2 | max
ij
∥vij∥2 ≤ 1}，其示性函数记为 IV(V)，则问题

(LPD) 可以整理为

min
U

max
V

f(U) + ⟨V,DU⟩ − IV(V)

70 / 110

TV-L1 模型

应用 PDHG 算法，则 V k+1 的更新为

V k+1 = proxsIV
(V k + sDUk) = PV(V k + sDUk)

Uk+1 的更新如下

Uk+1 = proxtf (Uk + tGV k+1)

= arg min
U

{
λ∥U −B∥1 + ⟨V k+1, DU⟩+ 1

2t
∥U − Uk∥2

F

}
其中 G : Rn×n×2 → Rn×n 为离散的散度算子，其满足

⟨V,DU⟩ = −⟨GV,U⟩, ∀ U ∈ Rn×n, V ∈ Rn×n×2

71 / 110

目录

7.1 近似点梯度法

7.2 Nesterov 加速算法

7.3 近似点算法

7.4 分块坐标下降法

7.5 对偶算法

7.6 交替方向乘子法

7.7 随机优化算法

72 / 110

典型问题形式

考虑如下凸问题

min
x1,x2

f1(x1) + f2(x2)

s.t. A1x1 + A2x2 = b
(4)

f1, f2 是适当的闭凸函数，但不要求是光滑的

目标函数可以分成彼此分离的两块，但是变量被线性约束结合在一起

73 / 110

问题形式举例

例 7.13 可以分成两块的无约束优化问题
min
x

f1(x) + f2(x)

引入一个新的变量 z 并令 x = z，将问题转化为
min
x,z

f1(x) + f2(z)

s.t. x− z = 0
例 7.14 带线性变换的无约束优化问题

min
x

f1(x) + f2(Ax)

引入一个新的变量 z，令 z = Ax，则问题变为
min
x,z

f1(x) + f2(z)

s.t. Ax− z = 0
74 / 110

问题形式举例

例 7.15 凸集 C ⊂ Rn 上的约束优化问题

min
x

f(x)

s.t. Ax ∈ C

引入约束 z = Ax，那么问题转化为

min
x,z

f(x) + IC(z)

s.t. Ax− z = 0

75 / 110

问题形式举例

例 7.16 全局一致性问题
min
x

N∑
i=1

ϕi(x)

令 x = z，并将 x 复制 N 份，分别为 xi，那么问题转化为

min
xi,z

N∑
i=1

ϕi(xi)

s.t. xi − z = 0, i = 1, 2, · · · , N

76 / 110

增广拉格朗日函数法

首先写出问题 (4) 的增广拉格朗日函数

Lρ(x1, x2, y) =f1(x1) + f2(x2) + y⊤(A1x1 + A2x2 − b)

+ ρ

2
∥A1x1 + A2x2 − b∥2

2

增广拉格朗日函数法为如下更新

(xk+1
1 , xk+1

2) = arg min
x1,x2

Lρ(x1, x2, y
k)

yk+1 = yk + τρ(A1x
k+1
1 + A2x

k+1
2 − b)

77 / 110

交替方向乘子法

Alternating direction method of multipliers, ADMM

迭代格式如下

(xk+1
1 , xk+1

2) = arg min
x1,x2

Lρ(x1, x2, y
k)

yk+1 = yk + τρ(A1x
k+1
1 + A2x

k+1
2 − b)

⇓

xk+1
1 = arg min

x1
Lρ(x1, x

k
2, y

k)

xk+1
2 = arg min

x2
Lρ(xk+1

1 , x2, y
k)

yk+1 = yk + τρ(A1x
k+1
1 + A2x

k+1
2 − b)

78 / 110

原问题最优性条件

问题 (4) 的拉格朗日函数为

L(x1, x2, y) = f1(x1) + f2(x2) + y⊤(A1x1 + A2x2 − b)

若 x∗
1, x

∗
2 为问题 (4) 的最优解，y∗ 为对应的拉格朗日乘子，则满足

0 ∈ ∂x1L(x∗
1, x

∗
2, y

∗) = ∂f1(x∗
1) + A⊤

1 y
∗ (5a)

0 ∈ ∂x2L(x∗
1, x

∗
2, y

∗) = ∂f2(x∗
2) + A⊤

2 y
∗ (5b)

A1x
∗
1 + A2x

∗
2 = b (5c)

条件 (5c) 称为原始可行性条件

条件 (5a) 和条件 (5b) 称为对偶可行性条件

79 / 110

ADMM 单步迭代最优性条件

关于 x2 的更新步骤

xk2 = arg min
x

{
f2(x) + ρ

2
∥A1x

k
1 + A2x− b+ yk−1

ρ
∥2
}

根据最优性条件推出

0 ∈ ∂f2(xk2) + A⊤
2 [yk−1 + ρ(A1x

k
1 + A2x

k
2 − b)]

当 τ = 1 时知
0 ∈ ∂f2(xk2) + A⊤

2 y
k

80 / 110

ADMM 单步迭代最优性条件

关于 x1 的更新公式

xk1 = arg min
x

{
f1(x) + ρ

2
∥A1x+ A2x

k−1
2 − b+ yk−1

ρ
∥2
}

假设子问题能精确求解，根据最优性条件

0 ∈ ∂f1(xk1) + A⊤
1 [ρ(A1x

k
1 + A2x

k−1
2 − b) + yk−1]

当 τ = 1 时知
0 ∈ ∂f1(xk1) + A⊤

1 (yk + ρA2(xk−1
2 − xk2))

81 / 110

ADMM 单步迭代最优性条件

对比条件 (5a)
0 ∈ ∂f1(x∗

1) + A⊤
1 y

∗

⇓
0 ∈ ∂f1(xk1) + A⊤

1 (yk + ρA2(xk−1
2 − xk2))

当 x2 更新取到精确解且 τ = 1 时，判断 ADMM 是否收敛只需要检测
原始可行性

0 ≈ ∥rk∥ = ∥A1x
k
1 + A2x

k
2 − b∥

对偶可行性
0 ≈ ∥sk∥ = ∥A⊤

1 A2(xk−1
2 − xk2)∥

82 / 110

线性化

考虑第一个子问题
min
x1

f1(x1) + ρ

2
∥A1x1 − vk∥2

当子问题目标函数可微时，线性化为

xk+1
1 = arg min

x1

{
(∇f1(xk1) + ρA⊤

1 (A1x
k
1 − vk))⊤x1 + 1

2ηk
∥x1 − xk∥2

2

}

这等价于做一步梯度下降

当目标函数不可微时，可以考虑只将二次项线性化

xk+1
1 = arg min

x1

{
f1(x1) + ρ(A⊤

1 (A1x
k
1 − vk))⊤x1 + 1

2ηk
∥x1 − xk∥2

2

}

这等价于做一步近似点梯度步
83 / 110

缓存分解

考虑目标函数中含二次函数

f1(x1) = 1
2
∥Cx1 − d∥2

2

⇓
(C⊤C + ρA⊤

1 A1)x1 = C⊤d+ ρA⊤
1 v

k

首先对 C⊤C + ρA⊤
1 A1 进行 Cholesky 分解并缓存分解的结果，在每步迭代中

只需要求解简单的三角形方程组

当 C⊤C + ρA⊤
1 A1 一部分容易求逆，另一部分是低秩的情形时，可以用SMW

公式来求逆

84 / 110

优化转移

为了方便求解子问题，可以用一个性质好的矩阵 D 近似二次项 A⊤
1 A1, 即

xk+1
1 = arg min

x1

{
f1(x1) + ρ

2
∥A1x1 − vk∥2

2

}
⇓

xk+1
1 = arg min

x1

{
f1(x1) + ρ

2
∥A1x1 − vk∥2

2 + ρ

2
(x1 − xk)⊤(D − A⊤

1 A1)(x1 − xk)
}

通过选取合适的 D，优化转移简化子问题更容易计算

当 D = ηk
ρ
I 时，优化转移等价于做单步的近似点梯度步

85 / 110

二次罚项系数的动态调节

二次罚项系数 ρ 太大会导致原始可行性 ∥rk∥ 下降很快，但是对偶可行性
∥sk∥ 下降很慢. 二次罚项系数 ρ 太小，则会有相反的效果

动态调节惩罚系数 ρ 的大小，使得原始可行性和对偶可行性能够以比较一致
的速度下降到零

ρk+1 =


γpρ

k, ∥rk∥ > µ∥sk∥
ρk/γd ∥sk∥ > µ∥rk∥
ρk, 其他

常见的选择为 µ = 10, γp = γd = 2

86 / 110

多块问题的 ADMM

考虑有多块变量的情形

min
x1,x2,··· ,xN

f1(x1) + f2(x2) + · · ·+ fN(xN)

s.t. A1x1 + A2x2 + · · ·+ ANxN = b

多块 ADMM 迭代格式为
xk+1

1 = arg min
x
Lρ(x, xk2, · · · , xkN , yk)

xk+1
2 = arg min

x
Lρ(xk+1

1 , x, · · · , xkN , yk)

· · · · · · · · · · · ·
xk+1
N = arg min

x
Lρ(xk+1

1 , xk+1
2 , · · · , x, yk)

yk+1 = yk + τρ(A1x
k+1
1 + A2x

k+1
2 + · · ·+ ANx

k+1
N − b)

其中 τ ∈ (0, (
√

5 + 1)/2) 为步长参数
87 / 110

应用举例: LASSO 问题

考虑 LASSO 问题
min µ∥x∥1 + 1

2
∥Ax− b∥2

转换为标准问题形式

min
x,z

1
2
∥Ax− b∥2 + µ∥z∥1

s.t. x = z

交替方向乘子法迭代格式为

xk+1 = arg min
x

{1
2
∥Ax− b∥2 + ρ

2
∥x− zk + yk/ρ∥2

2

}
= (A⊤A+ ρI)−1(A⊤b+ ρzk − yk)

88 / 110

应用举例: LASSO 问题

交替方向乘子法迭代格式为

zk+1 = arg min
z

{
µ∥z∥1 + ρ

2
∥xk+1 − z + yk/ρ∥2

}
= prox(µ/ρ)∥·∥1(xk+1 + yk/ρ)

yk+1 = yk + τρ(xk+1 − zk+1)

在求解 x迭代时，可以使用固定的罚因子 ρ，缓存矩阵 A⊤A+ρI 的初始分解

主要运算量来自更新 x 变量时求解线性方程组，复杂度为 O(n3)

89 / 110

应用举例: LASSO 问题

考虑 LASSO 问题的对偶问题
min b⊤y + 1

2∥y∥
2

s.t. ∥A⊤y∥∞ ≤ µ

引入约束 A⊤y + z = 0，可以得到如下等价问题

min b⊤y + 1
2
∥y∥2︸ ︷︷ ︸

f(y)

+ I∥z∥∞≤µ(z)︸ ︷︷ ︸
h(z)

s.t. A⊤y + z = 0

对约束 A⊤y + z = 0 引入乘子 x，对偶问题的增广拉格朗日函数

Lρ(y, z, x) = b⊤y + 1
2
∥y∥2 + I∥z∥∞≤µ(z)− x⊤(A⊤y + z) + ρ

2
∥A⊤y + z∥2

90 / 110

应用举例: LASSO 问题

当固定 y, x 时，对 z 的更新即向无穷范数球 {z | ∥z∥∞ ≤ µ} 做欧几里得投
影，即将每个分量截断在区间 [−µ, µ]

当固定 z, x 时，对 y 的更新即求解线性方程组

(I + ρAA⊤)y = A(xk − ρzk+1)− b

ADMM 迭代格式为

zk+1 = P∥z∥∞≤µ(xk/ρ− A⊤yk)
yk+1 = (I + ρAA⊤)−1(A(xk − ρzk+1)− b)
xk+1 = xk − τρ(A⊤yk+1 + zk+1)

由于 m≪ n，求解 y 更新的线性方程组需要的计算量是 O(m3)

91 / 110

应用举例: 矩阵分离问题

考虑矩阵分离问题

min
X,S

∥X∥∗ + µ∥S∥1

s.t. X + S = M

引入乘子 Y 得到增广拉格朗日函数

Lρ(X,S, Y) = ∥X∥∗ + µ∥S∥1 + ⟨Y,X + S −M⟩+ ρ

2
∥X + S −M∥2

F

92 / 110

应用举例: 矩阵分离问题

对于 X 子问题

Xk+1 = arg min
X

Lρ(X,Sk, Y k)

= arg min
X

{
∥X∥∗ + ρ

2
∥X + Sk −M + Y k

ρ
∥2
F

}

= arg min
X

{
1
ρ
∥X∥∗ + 1

2
∥X + Sk −M + Y k

ρ
∥2
F

}
= UDiag(prox(1/ρ)∥·∥1(σ(A)))V ⊤

其中 A = M − Sk − Y k

ρ
，σ(A) 为 A 的所有非零奇异值构成的向量并且

UDiag(σ(A))V ⊤ 为 A 的约化奇异值分解

93 / 110

应用举例: 矩阵分离问题

对于 S 子问题

Sk+1 = arg min
S

Lρ(Xk+1, S, Y k)

= arg min
S

{
µ∥S∥1 + ρ

2
∥Xk+1 + S −M + Y k

ρ
∥2
F

}

= prox(µ/ρ)∥·∥1(M −Xk+1 − Y k

ρ
)

交替方向乘子法的迭代格式为

Xk+1 = UDiag(prox(1/ρ)∥·∥1(σ(A)))V ⊤

Sk+1 = prox(µ/ρ)∥·∥1(M − Lk+1 − Y k

ρ
)

Y k+1 = Y k + τρ(Xk+1 + Sk+1 −M)
94 / 110

应用举例: 全局一致性优化问题

考虑全局一致性优化问题

min
xi,z

N∑
i=1

ϕi(xi)

s.t. xi − z = 0, i = 1, 2, · · · , N

增广拉格朗日函数为

Lρ(x1, · · · , xN , z, y1, · · · , yN) =
N∑
i=1

ϕi(xi) +
N∑
i=1

y⊤
i (xi − z) + ρ

2

N∑
i=1
∥xi − z∥2

固定 zk, yki，更新 xi 的公式为

xk+1
i = arg min

x

{
ϕi(x) + ρ

2
∥x− zk + yki /ρ∥2

}
95 / 110

应用举例: 全局一致性优化问题

在一般情况下更新 xi 的表达式为

xk+1
i = proxϕi/ρ

(zk − yki /ρ)

固定 xk+1
i , yki，关于 z 可以直接写出显式解

zk+1 = 1
N

N∑
i=1

(xik+1 + yki /ρ)

交替方向乘子法迭代格式为

xk+1
i = proxϕi/ρ

(zk − yki /ρ), i = 1, 2, · · · , N

zk+1 = 1
N

N∑
i=1

(xk+1
i + yki /ρ)

yk+1
i = yi

k + τρ(xik+1 − zk+1), i = 1, 2, · · · , N
96 / 110

目录

7.1 近似点梯度法

7.2 Nesterov 加速算法

7.3 近似点算法

7.4 分块坐标下降法

7.5 对偶算法

7.6 交替方向乘子法

7.7 随机优化算法

97 / 110

监督学习模型

假定 (a, b) 服从概率分布 P，其中 a 为输入，b 为标签

在自动邮件分类任务中，a 表示邮件内容，b 表示正常邮件或垃圾邮件

在人脸识别任务中，a 表示人脸的图像信息，b 表示该人脸属于何人

实际问题中我们不知道真实的概率分布 P，而是随机采样得到一个数据集

D = {(a1, b1), (a2, b2), · · · , (aN , bN)}

数据集 D 对应经验分布

P̂ = 1
N

N∑
n=1

δai,bi

98 / 110

监督学习模型

监督学习的任务是要给定输入 a 预测标签 b，即决定一个最优的函数 ϕ 使得
期望风险最小

E[L(ϕ(a), b)]

常用的 ℓ2 损失函数
L(x, y) = 1

2
∥x− y∥2

2

若 x, y ∈ Rd 为概率分布，则可定义互熵损失函数

L(x, y) =
d∑
i=1

xi log xi
yi

为了缩小目标函数的范围，需要将 ϕ(·) 参数化为 ϕ(·;x)

99 / 110

监督学习模型

用经验风险来近似期望风险，即要求解下面的极小化问题

min
x

1
N

N∑
i=1

L(ϕ(ai;x), bi) = E(a,b)∼P̂ [L(ϕ(a;x), b)]

记 fi(x) = L(ϕ(ai;x), bi), 则只需考虑如下随机优化问题

min
x∈Rn

f(x) = 1
N

N∑
i=1

fi(x)

由于数据规模巨大，通过采样的方式只计算部分样本的梯度来进行梯度下降

100 / 110

随机梯度下降算法 (SGD)

SGD 的基本迭代格式为

xk+1 = xk − αk∇f(xk), ∇f(xk) = 1
N

N∑
i=1
∇fi(xk)

⇓
xk+1 = xk − αk∇fsk

(xk)

sk 是从 {1, 2, · · · , N} 中随机等可能地抽取的一个样本
αk 称为步长，又称学习率

要保证随机梯度的条件期望恰好是全梯度，即

Esk
[∇fsk

(xk)|xk] = ∇f(xk)

101 / 110

随机梯度法

小批量（mini-batch）随机梯度法 每次迭代中，随机选择一个元素个数很少
的集合 Ik ⊂ {1, 2, · · · , N}，然后执行迭代格式

xk+1 = xk − αk∇fsk
(xk)

⇓

xk+1 = xk − αk
|Ik|

∑
s∈Ik

∇fs(xk)

随机次梯度法 当 fi(x) 是凸函数但不一定可微时，可以用 fi(x) 的次梯度代
替梯度进行迭代

xk+1 = xk − αkgk

102 / 110

动量方法

动量方法的具体迭代格式如下

vk+1 = µkv
k − αk∇fsk

(xk)
xk+1 = xk + vk+1

参数 µk 的范围是 [0, 1)，通常取 µk ≥ 0.5，其含义为迭代点带有较大惯性，
每次迭代会在原始迭代方向的基础上做一个小的修正. 当 µk = 0 时退化成随
机梯度下降法

−10 −5 0 5 10
−4

−2

0

2

4 梯度下降法

动量方法

103 / 110

Nesterov 加速算法

假设 f(x) 为光滑的凸函数, 则 Nesterov 加速算法为

yk+1 = xk + µk(xk − xk−1)
xk+1 = yk − αk∇f(yk)

针对光滑问题的 Nesterov 加速算法迭代的随机版本为

yk+1 = xk + µk(xk − xk−1)
xk+1 = yk+1 − αk∇fsk

(yk+1)

其中 µk = k−1
k+2，步长 αk 是一个固定值或者由线搜索确定

二者的唯一区别为随机版本将全梯度 ∇f(yk) 替换为随机梯度 ∇fsk
(yk+1)

104 / 110

Nesterov 加速算法与动量方法的联系

引入速度变量 vk = xk − xk−1，结合原始 Nesterov 加速算法的两步迭代得到

xk+1 = xk + µk(xk − xk−1)− αk∇fk(xk + µk(xk − xk−1))

定义 vk+1 = µkv
k − αk∇fk(xk + µkv

k), 于是关于 xk 和 vk 的等价迭代式

vk+1 = µkv
k − αk∇fsk

(xk + µkv
k)

xk+1 = xk + vk+1

与动量方法相比

vk+1 = µkv
k − αk∇fsk

(xk)
xk+1 = xk + vk+1

Nesterov 加速算法先对点施加速度的作用再求梯度，即对动量方法做了校正
105 / 110

AdaGrad

令 gk = ∇fsk
(xk)，引入

Gk =
k∑
i=1

gi ⊙ gi

当 Gk 的某分量较大时，该分量变化比较剧烈，应采用小步长，反之亦然

AdaGrad 迭代格式

xk+1 = xk − α√
Gk + ε1n

⊙ gk

Gk+1 = Gk + gk+1 ⊙ gk+1

106 / 110

AdaGrad 的收敛阶

如果在 AdaGrad 中使用真实梯度 ∇f(xk)，那么 AdaGrad 也可以看成是一种
介于一阶和二阶的优化算法

考虑 f(x) 在点 xk 处的二阶泰勒展开

f(x) ≈ f(xk) +∇f(xk)⊤(x− xk) + 1
2

(x− xk)⊤Bk(x− xk)

选取不同的 Bk 可以导出不同的优化算法，例如 AdaGrad 选择

Bk = 1
α

Diag(
√
Gk + ε1n)

AdaGrad 会累加之前所有的梯度分量平方，导致步长是单调递减的，因此在
训练后期步长会非常小，计算的开销较大

107 / 110

RMSProp

RMSProp（root mean square propagation）是对 AdaGrad 的一个改进，在非凸
问题上可能表现更好

RMSProp 只需使用离当前迭代点比较近的项，同时引入衰减参数 ρ．具体地，
令

Mk+1 = ρMk + (1− ρ)gk+1 ⊙ gk+1

再对其每个分量分别求根，就得到均方根 (root mean square)

Rk =
√
Mk + ε1n

最后将均方根的倒数作为每个分量步长的修正

108 / 110

RMSProp

RMSProp 迭代格式

xk+1 = xk − α√
Gk + ε1n

⊙ gk

Gk+1 = Gk + gk+1 ⊙ gk+1

⇓

xk+1 = xk − α

Rk
⊙ gk

Mk+1 = ρMk + (1− ρ)gk+1 ⊙ gk+1

RMSProp 和 AdaGrad 的唯一区别是将 Gk 替换成了 Mk

一般取 ρ = 0.9, α = 0.001
109 / 110

Adam

Adam 选择了一个动量项进行更新
Sk = ρ1S

k−1 + (1− ρ1)gk

类似 RMSProp，Adam 也会记录梯度的二阶矩
Mk = ρ2M

k−1 + (1− ρ2)gk ⊙ gk

与原始动量方法和 RMSProp 的区别是，由于 Sk 和 Mk 本身带有偏差，
Adam 在更新前先对其进行修正

Ŝk = Sk

1− ρk1
, M̂k = Mk

1− ρk2
Adam 最终使用修正后的一阶矩和二阶矩进行迭代点的更新

xk+1 = xk − α√
M̂k + ε1n

⊙ Ŝk

110 / 110

Q&A
Thank you!
感谢您的聆听和反馈

