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向量范数的定义

定义 2.1 令记号 ∥ · ∥ : Rn → R+ 是一种非负函数, 如果满足

正定性 对于 ∀v ∈ Rn, 有 ∥v∥ ⩾ 0, 且 ∥v∥ = 0 当且仅当 v = 0n×1

齐次性 对于 ∀v ∈ Rn 和 α ∈ R, 有 ∥αv∥ = |α|∥v∥
三角不等式 对于 ∀v, w ∈ Rn, 均成立 ∥v + w∥ ⩽ ∥v∥ + ∥w∥

则称 ∥ · ∥ 是定义在向量空间 Rn 上的向量范数

最常用的向量范数

∥v∥p = (|v1|p + |v2|p + · · · + |vn|p)
1
p (p ≥ 1)

∥v∥∞ = max
1⩽j⩽n

|vj|
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向量范数的定义

不同范数所度量的距离分别具有怎样的特征呢?
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矩阵范数

ℓ1 范数 ∥A∥1 = ∑
i,j |Aij|

Frobenius 范数 ∥A∥F =
√∑

i,j A2
ij =

√
Tr(AA⊤)

算子范数是一类特殊的矩阵范数, 由向量范数诱导得到

∥A∥(m,n) = max
x∈Rn,∥x∥(n)=1

∥Ax∥(m)

p = 1 时, ∥A∥p=1 = max
∥x∥1=1

∥Ax∥1 = max
1⩽j⩽n

∑m
i=1 |aij|

p = 2 时, ∥A∥p=2 = max
∥x∥2=1

∥Ax∥2 =
√

λmax(A⊤A), 又称为 A 的谱范数

p = ∞ 时, ∥A∥p=∞ = max
∥x∥∞=1

∥Ax∥∞ = max
1⩽i⩽m

∑n
j=1 |aij|
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矩阵范数

核范数

∥A∥∗ =
r∑

i=1
σi

矩阵内积

⟨A, B⟩ = Tr(AB⊤) =
m∑

i=1

n∑
j=1

aijbij

命题 2.2 设 A, B ∈ Rm×n, 则

|⟨A, B⟩| ⩽ ∥A∥F ∥B∥F

等号成立当且仅当 A 和 B 线性相关，即柯西不等式

性质 同一矩阵空间内, 矩阵范数彼此之间是相互等价的
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梯度

定义 2.2 给定函数 f : Rn → R，且 f 在点 x 的一个邻域内有意义，若存在
向量 g ∈ Rn 满足

lim
p→0

f(x + p) − f(x) − ⟨g, p⟩
∥p∥

= 0

其中 ∥ · ∥ 是任意的向量范数，称 f 在点 x 处可微（或 Fréchet 可微），g 为 f
在点 x 处的梯度，记作

∇f(x) = [∂f(x)
∂x1

,
∂f(x)
∂x2

, · · · ,
∂f(x)
∂xn

]⊤

如果对区域 D 上的每一个点 x 都有 ∇f(x) 存在，则称 f 在 D 上可微
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海瑟矩阵

定义 2.3 如果函数 f(x) : Rn → R 在点 x 处的二阶偏导数 ∂2f(x)
∂xi∂xj

都存在，
则 f 在点 x 处的海瑟矩阵为

∇2f(x) =



∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

∂2f(x)
∂x1∂x3

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

∂2f(x)
∂x2∂x3

· · · ∂2f(x)
∂x2∂xn... ... ... ...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

∂2f(x)
∂xn∂x3

· · · ∂2f(x)
∂x2

n


当 ∇2f(x) 在区域 D 上的每个点 x 处都存在时，称 f 在 D 上二阶可微

若 ∇2f(x) 在 D 上还连续，则称 f 在 D 上二阶连续可微
8 / 64



梯度利普希茨连续

定义 2.4 给定可微函数 f，若存在 L > 0，对任意的 x, y ∈ dom f 有

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥

则称 f 是梯度利普希茨连续的，相应利普希茨常数为 L

引理 2.1 设可微函数 f(x) 的定义域为 Rn 且为梯度 L-利普希茨连续的，则
函数 f(x) 有二次上界

f(y) ≤ f(x) + ∇f(x)⊤(y − x) + L

2
∥y − x∥2, ∀ x, y ∈ dom f

f(x) 定义域的要求可减弱为凸集
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梯度利普希茨连续

推论 2.1 设可微函数 f(x) 的定义域为 Rn 且存在一个全局极小点 x∗, 若
f(x) 为梯度 L -利普希茨连续的, 则对任意的 x 有

1
2L

∥∇f(x)∥2 ≤ f(x) − f(x∗)

证明 由于 x∗ 是全局极小点，有

f(x∗) ≤ f(y) ≤ f(x) + ∇f(x)⊤(y − x) + L

2
∥y − x∥2

上式对任意的 y 均成立，因此可对不等号右边取下确界

f(x∗) ≤ infy∈Rn{f(x) + ∇f(x)⊤(y − x) + L

2
∥y − x∥2}

= f(x) − 1
2L

∥∇f(x)∥2
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矩阵变量函数的导数

对于函数 f(X)，若存在矩阵 G ∈ Rm×n 满足

lim
V →0

f(X + V ) − f(X) − ⟨G, V ⟩
∥V ∥

= 0

其中 ∥ · ∥ 是任意矩阵范数，称矩阵变量函数 f 在 X 处 Fréchet 可微，G 为
f 在 Fréchet 可微意义下的梯度, 记为

∇f(X) =



∂f

∂x11

∂f

∂x12
· · · ∂f

∂x1n
∂f

∂x21

∂f

∂x22
· · · ∂f

∂x2n... ... ...
∂f

∂xm1

∂f

∂xm2
· · · ∂f

∂xmn


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矩阵变量函数的导数

定义 2.5 如果对任意方向 V ∈ Rm×n，存在矩阵 G ∈ Rm×n 满足

lim
V →0

f(X + V ) − f(X) − ⟨G, V ⟩
∥V ∥

= 0

⇓

lim
t→0

f(X + tV ) − f(X) − t⟨G, V ⟩
t

= 0

则称 f 关于 X Gâteaux 可微，G 为 f 在 X 处 Gâteaux 可微意义下的梯度

当 f 是 Fréchet 可微函数时，f 也是 Gâteaux 可微的，且梯度相等
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例 2.1

线性函数 f(X) = Tr(AX⊤B)

lim
t→0

f(X + tV ) − f(X)
t

= lim
t→0

Tr(A(X + tV )⊤B) − Tr(AX⊤B)
t

= Tr(AV ⊤B) = ⟨BA, V ⟩
⇒ ∇f(X) = BA

二次函数 f(X, Y ) = ∥XY − A∥2
F

f(X, Y + tV ) − f(X, Y ) = ∥X(Y + tV ) − A∥2
F − ∥XY − A∥2

F

= 2⟨tXV, XY − A⟩ + t2∥XV ∥2
F

= 2t⟨V, X⊤(XY − A)⟩ + O(t2)

⇒ ∂f
∂Y

= 2X⊤(XY − A)
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矩阵小册子
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广义实值函数

在最优化领域，经常涉及量取 inf（sup） 操作，可能为无穷

定义 2.6 令 R := R ∪ {±∞} 为广义实数空间，则映射

f : Rn → R

称为广义实值函数

规定
−∞ < α < ∞, ∀α ∈ R
(+∞) + (+∞) = +∞, (+∞) + α = +∞, ∀α ∈ R
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适当函数

定义 2.7 给定广义实值函数 f 和非空集合 X，如果存在 x ∈ X 使得
f(x) < +∞，并且对任意的 x ∈ X 都有 f(x) > −∞，则称函数 f 是关于集
合 X 的适当函数

具体含义

至少有一处取值不为正无穷

处处取值不为负无穷

对于适当函数 f，规定其定义域

dom f = {x | f(x) < +∞}

若无特殊说明，定理中所讨论的函数均为适当函数
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闭函数

定义 2.8 设 f 为广义实值函数，α-下水平集定义为

Cα = {x | f(x) ≤ α }

定义 2.9 设 f 为广义实值函数，上方图定义为

epi f = { (x, t) ∈ Rn+1 | f(x) ≤ t}
gg
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下半连续函数

定义 2.10 设 f 为广义实值函数，若 epi f 为闭集，则称 f 为闭函数

定义 2.11 设 f 为广义实值函数，若对任意的 x ∈ Rn，有

lim inf
y→x

f(y) ≥ f(x)

则 f(x) 为下半连续函数
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闭函数与下半连续函数

定理 2.2 设广义实值函数 f : Rn → R，则以下命题等价

f(x) 的任意 α-下水平集都是闭集
f(x) 是下半连续的
f(x) 是闭函数

性质

若 f 与 g 均为适当的闭（下半连续）函数，并且 dom f ∩ dom g ̸= ∅，则
f + g 也是闭（下半连续）函数

若 f 为闭（下半连续）函数, 则 f(Ax + b) 也为闭（下半连续）函数
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凸集的几何定义

定义 2.12 若过集合 C 中的任意两点的直线都在 C 内, 则称 C 为仿射集, 即

x1, x2 ∈ C ⇒ θx1 + (1 − θ)x2 ∈ C, ∀θ ∈ R

定义 2.13 若连接集合 C 中的任意两点的线段都在 C 内, 则称 C 为凸集, 即

x1, x2 ∈ C ⇒ θx1 + (1 − θ)x2 ∈ C, ∀0 ⩽ θ ⩽ 1

(a) (b) (c)
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凸集的性质

若 S 是凸集, 则 kS = {ks | k ∈ R, s ∈ S} 是凸集

若 S 和 T 均是凸集, 则 S + T = {s + t | s ∈ S, t ∈ T } 是凸集

若 S 和 T 均是凸集, 则 S ∩ T 是凸集

证明 设 x, y ∈ S ∩ T 且 θ ∈ [0, 1]. 由于 S 和 T 均为凸集, 则

θx + (1 − θ)y ∈ S ∩ T

凸集的内部和闭包都是凸集

任意多凸集的交都是凸集
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凸组合和凸包

形如
x = θ1x1 + θ2x2 + · · · + θkxk

θ1 + · · · + θk = 1, θi ⩾ 0, i = 1, · · · , k

的点称为 x1, · · · , xk 的凸组合

集合 S 的所有点的凸组合构成的点集为 S 的凸包, 记为 conv S

conv S 是包含 S 的最小凸集
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仿射组合和仿射包

定义 2.14 形如
x = θ1x1 + θ2x2 + · · · + θkxk

θ1 + · · · + θk = 1, θi ∈ R, i = 1, · · · , k

的点称为 x1, · · · , xk 的仿射组合

集合 S 的所有点的仿射组合构成的点集为 S 的仿射包, 记为 affine S

affine S 是包含 S 的最小仿射集
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锥组合和凸锥

形如
x = θ1x1 + · · · + θkxk, θi > 0, i = 1, · · · , k

的点称为 x1, · · · , xk 的锥组合

若集合 S 中任意点的锥组合都在 S 中, 则称 S 为凸锥

锥组合不要求系数的和为 1
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超平面和半空间

任取非零向量 a ∈ Rn, 称 {x | a⊤x = b} 为超平面, {x | a⊤x ⩽ b} 为半空间

满足线性等式和不等式组点的集合 {x | Ax ⩽ b, Cx = d} 称为多面体

超平面是仿射集和凸集, 半空间是凸集但不是仿射集

多面体是有限个半空间和超平面的交
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分离超平面定理

定理 2.3 如果 C 和 D 是不相交的凸集, 则存在非零向量 a 和常数 b, 使得

a⊤x ⩽ b, ∀x ∈ C 且 a⊤x ⩾ b, ∀x ∈ D

即超平面 {x | a⊤x = b} 分离了 C 和 D

定理 2.4 如果存在非零向量 a 和常数 b, 使得

a⊤x < b, ∀x ∈ C 且 a⊤x > b, ∀x ∈ D

即超平面 {x | a⊤x = b}严格分离了 C 和 D
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分离超平面的示意

在 R2 中的 2 个凸集使用超平面即可轻松划分, 但遇到非凸集合就必须使用
更加复杂的平面
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支撑超平面

定义 2.5 给定集合 C 及其边界点 x0, 如果 a ̸= 0 满足 a⊤x ⩽ a⊤x0, ∀x ∈ C,
则称集合

{x | a⊤x = a⊤x0}
为 C 在边界点 x0 处的支撑超平面

定理 2.5 若 C 是凸集, 则 C 的任意边界点处都存在支撑超平面
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球和椭球

称空间中到点 xc 的距离小于等于定值 r 的集合为(欧几里得) 球, 即

B(xc, r) = {x | ∥x − xc∥2 ⩽ r} = {xc + ru | ∥u∥2 ⩽ 1}

设形如

{x | (x − xc)⊤P −1(x − xc) ⩽ 1} = {xc + Au | ∥u∥2 ⩽ 1}

的集合为椭球, 其中 xc 为椭球中心, P 为对称正定, 且 A 非奇异

令 ∥ · ∥ 是任意一个范数, 称

{x | ∥x − xc∥ ⩽ r}

为中心为 xc 半径为 r 的范数球
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范数锥

形如
{(x, t) | ∥x∥ ⩽ t}

的集合为范数锥

使用 ∥ · ∥2 度量距离的锥为二次锥，也称冰淇淋锥

Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}

Euclidean norm cone is called second-
order cone

x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

norm balls and cones are convex

Convex sets 2–8

范数球和范数锥都是凸集
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(半) 正定锥

记 Sn 为对称矩阵的集合, 即 Sn = {X ∈ Rn×n | X⊤ = X}

记 Sn
+ 为半正定矩阵的集合, 即 Sn

+ = {X ∈ Sn | X ⪰ 0}

记 Sn
++ 为正定矩阵的集合, 即 Sn

++ = {X ∈ Sn | X ≻ 0}

0
1

0.2

0.4

0.5 1

z

0.6

0.8

y

0.8

0 0.6

x

1

0.4-0.5
0.2

-1 0

对于矩阵
(

x y
y z

)
, 其特征值应全

部大于等于 0

⇓

{(x, y, z) | x ⩾ 0, z ⩾ 0, xz ⩾ y2}
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凸分析
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凸函数的定义

定义 2.16 设 f : Rn → R 为适当函数，如果 dom f 是凸集，且

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

对所有 x, y ∈ dom f , 0 ≤ θ ≤ 1 都成立，则称 f 是凸函数

若对所有 x, y ∈ dom f，x ̸= y，0 < θ < 1，有

f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y)

则称 f 是严格凸函数

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1

Convex functions 3–2

36 / 64



一元凸函数的例子

仿射函数 对任意 a, b ∈ R，ax + b 是 R 上的凸 (凹)函数

指数函数 对任意 a ∈ R，eax 是 R 上的凸函数

绝对值的幂 对 p ≥ 1，|x|p 是 R 上的凸函数

幂函数 对 α ≥ 1 或 α ≤ 0，xα 是 R++ 上的凸函数

幂函数 对 0 ≤ α ≤ 1，xα 是 R++ 上的凹函数

对数函数 log x 是 R++ 上的凹函数

Sigmoid 函数、Heaviside 函数、ReLU 函数 . . .
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多元凸函数的例子

所有的仿射函数既是凸函数，又是凹函数

f(x) = a⊤x + b

f(X) = Tr(A⊤X) + b =
m∑

i=1

n∑
j=1

AijXij + b

所有的范数都是凸函数

f(x) = ∥x∥p = (
n∑

i=1
|xi|p)1/p (p ≥ 1)

f(X) = ∥X∥2 = σmax(X) = (λmax(X⊤X))1/2
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强凸函数

定义 2.17 若存在常数 m > 0，使得

g(x) = f(x) − m

2
∥x∥2

为凸函数，则称 f(x) 为强凸函数

为了方便也称 f(x) 为 m-强凸函数

命题 2.3 设 f 为强凸函数且存在最小值，则 f 的最小值点唯一

Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1

Convex functions 3–2
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凸函数判定定理

定理 2.6 f(x) 是凸函数当且仅当对每个 x ∈ dom f，v ∈ Rn，函数
g : R → R 是关于 t 的凸函数

g(t) = f(x + tv), dom g = {t | x + tv ∈ dom f}

例 2.4 f(X) = − log det X 是凸函数，其中 dom f = Sn
++

证明 任取 X ≻ 0 以及方向 V ∈ Sn，将 f 限制在直线 X + tV 上，则

g(t) = − log det(X + tV )
= − log det X − log det(I + tX−1/2V X−1/2)

= − log det X −
n∑

i=1
log(1 + tλi)

40 / 64



一阶条件

定理 2.7 对于定义在凸集上的可微函数 f，则 f 是凸函数当且仅当

f(y) ≥ f(x) + ∇f(x)⊤(y − x) ∀x, y ∈ dom f

First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(

∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator

Convex functions 3–7

定理 2.8 设 f 为可微函数，则 f 为凸函数当且仅当 dom f 为凸集且 ∇f
为单调映射

(∇f(x) − ∇f(y))⊤(x − y) ≥ 0, ∀ x, y ∈ dom f
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二阶条件

定理 2.9 设 f 为定义在凸集上的二阶连续可微函数, 则 f 是凸函数当且仅当

∇2f(x) ⪰ 0 ∀x ∈ dom f

如果 ∇2f(x) ≻ 0 ∀x ∈ dom f ，则 f 是严格凸函数

例 2.5 最小二乘函数 f(x) = ∥Ax − b∥2
2

∇f(x) = 2A⊤(Ax − b), ∇2f(x) = 2A⊤A

对任意 A，函数 f 都是凸函数
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上方图

定理 2.10 函数 f(x) 为凸函数当且仅当其上方图 epi 是凸集

证明 (必要性) 若 f 为凸函数，则对任意 (x1, y1), (x2, y2) ∈ epi f, t ∈ [0, 1] 有

ty1 + (1 − t)y2 ≥ tf(x1) + (1 − t)f(x2) ≥ f(tx1 + (1 − t)x2)

故 (tx1 + (1 − t)x2, ty1 + (1 − t)y2) ∈ epi f, t ∈ [0, 1]

(充分性) 若 epi f 是凸集，则对任意 x1, x2 ∈ dom f, t ∈ [0, 1] 有

(tx1 + (1 − t)x2, tf(x1) + (1 − t)f(x2)) ∈ epi f

⇓

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2)
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凸函数的判断方法

用定义验证（通常将函数限制在一条直线上）

利用一阶条件、二阶条件

直接研究 f 的上方图 epi f

说明 f 可由简单的凸函数通过保凸运算得到

非负加权和

与仿射函数复合

逐点取最大值

与标量向量函数复合
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非负加权和与仿射函数的复合

定理 2.11 (1) 若 f 是凸函数，则 αf 是凸函数，其中 α ≥ 0

定理 2.11 (2) 若 f1, f2 是凸函数，则 f1 + f2 是凸函数

定理 2.11 (3) 若 f 是凸函数，则 f(Ax + b) 是凸函数

例子

线性不等式的对数障碍函数

f(x) = −
m∑

i=1
log(bi − a⊤

i x), dom f = {x | a⊤
i x < bi, i = 1, ..., m}

仿射函数的（任意）范数 f(x) = ∥Ax + b∥
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逐点取最大值

定理 2.11 (4) 若 f1, · · · , fm 是凸函数，则

f(x) = max{f1(x), · · · , fm(x)}

是凸函数

例子

分段线性函数
f(x) = max

i=1,··· ,m
(a⊤

i x + bi)

x ∈ Rn 的前 r 个最大分量之和

f(x) = x[1] + x[2] + · · · + x[r]

⇕
f(x) = max{xi1 + xi2 + · · · + xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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逐点取上界

定理 2.11 (5) 若对每个 y ∈ A，f(x, y) 是关于 x 的凸函数，则

g(x) = sup
y∈A

f(x, y)

是凸函数

例子

集合 C 点到给定点 x 的最远距离

f(x) = sup
y∈C

∥x − y∥

对称矩阵 X ∈ Sn 的最大特征值

λmax(X) = sup
∥y∥2=1

y⊤Xy
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与函数的复合

定理 2.11 (6) 给定函数 g : Rn → R 和 h : R → R,

f(x) = h(g(x))

若 g 是凸函数, h 是凸函数且单调不减
g 是凹函数, h 是凸函数且单调不增 ，那么 f 是凸函数

例子

如果 g 是凸函数，则 exp g(x) 是凸函数
如果 g 是正值凹函数，则 1/g(x) 是凸函数

48 / 64



取下确界

定理 2.11 (7) 若 f(x, y) 关于 (x, y) 整体是凸函数，C 是凸集，则
g(x) = inf

y∈C
f(x, y)

是凸函数

例子

考虑函数 f(x, y) = x⊤Ax + 2x⊤By + y⊤Cy，海瑟矩阵满足[
A B

B⊤ C

]
⪰ 0, C ≻ 0

则 f(x, y) 为凸函数. 对 y 求最小值得

g(x) = inf
y

f(x, y) = x⊤(A − BC−1B⊤)x

点 x 到凸集 S 的距离 dist(x, S) = inf
y∈S

∥x − y∥ 是凸函数
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凸函数的性质

命题 2.4 设 f(x) 是凸函数，则 f(x) 的所有的 α-下水平集为凸集

引理 2.2 设 f(x) 是参数为 m 的可微强凸函数，则如下不等式成立

g(y) ≥ f(x) + ∇f(x)⊤(y − x) + m

2
∥y − x∥2, ∀x, y ∈ dom f

证明 由强凸函数的定义有 g(x) = f(x) − m
2 ∥y − x∥2 是凸函数. 根据凸函数

的一阶条件知
g(y) ≥ g(x) + ∇g(x)⊤(y − x)

⇓

f(y) ≥ f(x) − m

2
∥x∥2 + m

2
∥y∥2 + (∇f(x) − mx)⊤(y − x)

= f(x) + ∇f(x)⊤(y − x) + m

2
∥y − x∥2
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共轭函数

定义 2.19 适当函数 f 的共轭函数定义为

f ∗(y) = sup
x∈dom f

(y⊤x − f(x))

无论 f 是否是凸函数，f ∗ 恒为凸函数

The conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

• f∗ is convex (even if f is not)

• will be useful in chapter 5

Convex functions 3–21

命题 2.5 Fenchel 不等式 f(x) + f ∗(y) ≥ x⊤y ∀x, y
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例 2.6

考虑二次函数
f(x) = 1

2
x⊤Ax + b⊤x + c

强凸情形（A ≻ 0）知

f ∗(y) = 1
2

(y − b)⊤A−1(y − b) − c

一般凸情形（A ⪰ 0）知

f ∗(y) = 1
2

(y − b)⊤A†(y − b) − c, dom f ∗ = R(A) + b

这里 R(A) 为 A 的像空间
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例 2.7

给定凸集 C, 示性函数为

IC(x) =
{

0, x ∈ C
+∞, x ̸∈ C

共轭函数
I∗(y) = sup

x
{y⊤x − IC(x)}

= sup
x∈C

y⊤x

I∗(y) 称为凸集 C 的支撑函数
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二次共轭函数

定义 2.20 任一函数 f 的二次共轭函数定义为

f ∗∗(x) = sup
y∈dom f∗

(x⊤y − f ∗(y))

定理 2.12 若 f 为闭凸函数，则

f ∗∗(x) = f(x)

性质 若 f 为闭凸函数，则

y ∈ ∂f(x) ⇔ x ∈ ∂f ∗(y) ⇔ x⊤y = f(x) + f ∗(y)
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次梯度

回顾可微凸函数 f 的一阶条件

f(y) ≥ f(x) + ∇f(x)⊤(y − x)

定义 2.21 设 f 为适当凸函数，x 为 dom f 中的一点. 若向量 g ∈ Rn 满足

f(y) ≥ f(x) + g⊤(y − x), ∀y ∈ dom f

则称 g 为函数 f 在点 x 处的一个次梯度. 进一步，称集合

∂f(x) = {g | g ∈ Rn, f(y) ≥ f(x) + g⊤(y − x), ∀y ∈ dom f}

为 f 在点 x 处的次微分
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次梯度

g1 是点 x1 处的次梯度

g2, g3 是点 x2 处的次梯度
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例子

绝对值函数 f(x) = |x|

欧几里得范数 f(x) = ∥x∥2

若 x ̸= 0, ∂f(x) = 1
∥x∥2

x, 若 x = 0, ∂f(x) = {g | ∥g∥2 ≤ 1}
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次梯度的性质

定理 2.13 设 f 是凸函数，则 ∂f(x) 有如下性质

对任何 x ∈ dom f，∂f(x) 是一个闭凸集（可能为空集）
如果 x ∈ int dom f，则 ∂f(x) 非空有界集

命题 2.6 设凸函数 f(x) 在 x ∈ int dom f 处可微，则

∂f(x) = {∇f(x)}

定理 2.14 设 f : Rn → R 为凸函数，x, y ∈ dom f，则

(u − v)⊤(x − y) ≥ 0

其中 u ∈ ∂f(x)，v ∈ ∂f(y)
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两个函数之和的次梯度

定理 2.15 设 f1, f2 : Rn → (−∞, +∞] 是凸函数，则对任意的 x ∈ Rn 有

∂f1(x) + ∂f2(x) ⊆ ∂(f1 + f2)(x)

进一步，若 int dom f1 ∩ dom f2 ̸= ∅，则对任意的 x0 ∈ Rn 有

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x)

若 f(x) = α1f1(x) + α2f2(x), α1, α2 ≥ 0, 则 f(x) 的次微分

∂f(x) = α1∂f1(x) + α2∂f2(x)

Moreau-Rockafellar 定理
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函数族的上确界

定理 2.16 设 f1, f2, · · · , fm : Rn → (−∞, +∞] 均为凸函数，令

f(x) = max{f1(x), f2(x), · · · , fm(x)}, ∀x ∈ Rn

对 x0 ∈
m∩

i=1
int dom fi，定义 I(x0) = {i | fi(x0) = f(x0)}，则

∂f(x0) = conv
∪

i∈I(x0)
∂fi(x0)

I(x0) 表示点 x0 处“有效”函数的指标

∂f(x0) 是点 x0 处“有效”函数的次微分并集的凸包

如果 fi 可微, ∂f(x0) = conv{∇fi(x0) | i ∈ I(x0)}
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例 2.11

分段线性函数
f(x) = max

i=1,2,··· ,m
{a⊤

i x + bi}

点 x 处的次微分是一个多面体

∂f(x) = conv{ai | i ∈ I(x)}, I(x) = {i | a⊤
i x + bi = f(x)}
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例 2.12

ℓ1-范数
f(x) = ∥x∥1 = max

s∈{−1,1}n
s⊤x

点 x 处的次微分是

∂f(x) = J1 × · · · × Jn, Jk =


[−1, 1], xk = 0

{1}, xk > 0
{−1}, xk < 0

64 / 64



Q&A
Thank you!
感谢您的聆听和反馈


