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凸优化问题

标准形式的凸优化问题

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0, i = 1, · · · ,m
a⊤

i x = bi, i = 1, · · · , p

f0, f1, . . . , fm 为凸函数

a⊤
i x = bi 为线性等式约束

经常写成
min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0, i = 1, · · · ,m
Ax = b
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应用举例

考虑
min
x1,x2

f0(x) = x2
1 + x2

2

s.t. f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)2 = 0

f0 为凸函数, 可行集 {(x1, x2) | x1 = −x2 ≤ 0} 为凸集
f1 非凸, h1 不是线性函数

不是凸问题，但可转化为凸优化问题

min
x1,x2

x2
1 + x2

2

s.t. x1 ≤ 0
x1 + x2 = 0
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局部和全局极小

凸优化问题的任意局部极小点都是全局最优

证明 设 x 是局部极小解，y 是全局最优解且 f0(y) < f0(x). 存在 R > 0 使

z可行, ∥z − x∥2 ≤ R ⇒ f0(z) ≥ f0(x)

考虑 z = θy + (1 − θ)x 且 θ = R/(2∥y − x∥2)
∥y − x∥2 > R, 则 0 < θ < 1/2
z 是两个可行点的凸组合，则也可行

∥z − x∥2 = R/2，并且

f0(z) ≤ θf0(x) + (1 − θ)f0(y) < f0(x)

这与 x 是局部极小的假设矛盾
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可微凸优化问题的最优性条件

设 x 是凸优化问题 min
x∈X

f0(x) 的最优解当且仅当 x 可行且满足

∇f0(x)⊤(y − x) ≥ 0, ∀y ∈ X

Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)
T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x

Convex optimization problems 4–9

如果 ∇f0(x) 非零，它定义了可行集 X 在 x 处的支撑超平面
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具体含义

无约束优化 x 是最优解当且仅当

x ∈ dom f0, ∇f0(x) = 0
等式约束优化问题

min f0(x) s.t. Ax = b

x 是最优解当且仅当存在 υ 使得

x ∈ dom f0, Ax = b, ∇f0(x) + A⊤υ = 0
非负约束优化问题

min f0(x) s.t. x ≥ 0
x 是最优解当且仅当

x ∈ dom f0, x ≥ 0,
{

∇f0(x)i ≥ 0, xi = 0
∇f0(x)i = 0, xi > 0
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线性规划基本形式

线性规划问题的一般形式
min
x∈Rn

c⊤x

s.t. Ax = b

Gx ≤ e

线性规划问题的标准形式
min
x∈Rn

c⊤x

s.t. Ax = b

x ≥ 0

线性规划问题的不等式形式
max
y∈Rn

b⊤y

s.t. A⊤y ≤ c
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应用举例: 基追踪问题

基追踪问题是压缩感知中的一个基本问题，可以写为

min
x∈Rn

∥x∥1

s.t. Ax = b

对每个 |xi| 引入一个新的变量 zi，可以转化为

min
z∈Rn

n∑
i=1

zi

s.t. Ax = b

− zi ≤ xi ≤ zi, i = 1, · · · , n
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应用举例: 数据拟合

最小 ℓ∞ 范数模型
min
x∈Rn

∥Ax− b∥∞

令 t = ∥Ax− b∥∞，得到等价问题

min
x∈Rn, t∈R

t

s.t. ∥Ax− b∥∞ ≤ t

利用 ℓ∞ 范数的定义，可以进一步写为

min
x∈Rn, t∈R

t

s.t. − t1 ≤ Ax− b ≤ t1
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最小二乘问题

最小二乘问题的一般形式如下

min
x∈Rn

m∑
i=1

r2
i (x)

如果所有的 ri : Rn → R 都是线性函数，则称线性最小二乘问题，否则称为
非线性最小二乘问题

如果噪声服从高斯分布，最小二乘问题的解对应于原问题的最大似然解

1801 年，24 岁的高斯计算出小行星的运动轨道
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应用举例: 线性最小二乘问题

线性最小二乘问题是回归分析中的一个基本模型，它可以表示为

min
x∈Rn

m∑
i=1

(a⊤
i x− bi)2

记 A = [a1, a2, · · · , am]⊤，上式可以等价地写成

min
x∈Rn

f(x) = 1
2

∥Ax− b∥2
2

x ∈ Rn 为其全局极小解当且仅当 x 满足

∇f(x) = A⊤(Ax− b) = 0
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应用举例: 数据插值

给定数据集 {ai ∈ Rp, bi ∈ Rq, i = 1, 2, · · · ,m}，插值是求一个映射 f，使得

bi = f(ai), i = 1, 2, · · · ,m

利用线性函数 f(a) = Xa+ y 逼近，可以建立如下最小二乘问题

min
X∈Rq×p

m∑
i=1

∥Xai + y − bi∥2

设 {ϕi(a)}n
i=1(n ≤ m) 为插值空间的一组基，数据插值可以写成

bj = f(aj) =
n∑

i=1
xiϕi(aj), j = 1, 2, · · · ,m
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应用举例: 数据插值

设非线性向量函数 ϕi(θ) : Rq → Rq，并构造如下复合函数

f(θ) = ϕn(Xnϕn−1(Xn−1 · · ·ϕ1(X1θ + y1) · · · + yn−1) + yn)

常用的有 ReLU，即

ϕi(θ) = (ReLU(θ1),ReLU(θ2), · · · ,ReLU(θq))⊤, i = 1, 2, · · · , n

ReLU(t) =
{
t, t ≥ 0
0, 其他

更多未知的非线性，可能在更大的函数空间中得到一个更好的逼近
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应用举例: 带微分方程约束优化问题

当约束中含微分方程时，称为带微分方程约束的优化问题

考虑瓦斯油催化裂解生成气体和其他副产物的反应过程{
ẏ1 = −(θ1 + θ3)y2

1

ẏ2 = θ1y
2
1 − θ2y2

转化为最小二乘问题

min
θ∈R3

n∑
j=1

∥y(τj; θ) − zj∥2

s.t. y(τ ; θ)满足上述方程组

其中 zj 是在时刻 τj 的 y 的测量值，n 为测量的时刻数量
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复合优化问题

复合优化问题一般可以表示为

min
x∈Rn

ψ(x) = f(x) + h(x)

f(x) 是光滑函数, 如数据拟合项
h(x) 可能是非光滑的, 如 ℓ1 范数正则项，约束集合的示性函数

常用的优化算法有

次梯度法

近似点梯度法

Nesterov 加速法
交替方向乘子法
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应用举例: 信号处理

ℓ1 范数正则化回归分析问题

min
x∈Rn

1
2

∥Ax− b∥2
2 + µ∥x∥1

矩阵分离问题
min

X,S∈Rm×n
∥X∥∗ + µ∥S∥1

s.t. X + S = M

字典学习问题
min

X,D∈Rm×n

1
2n

∥DX − A∥2
F + λ∥X∥1

s.t. ∥D∥F ⩽ 1
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应用举例: 图像去噪

图像去噪是指从一个带噪声的图像中恢复出不带噪声的原图

由全变差模型，去噪问题可表示为

min
x∈Rn×n

1
2

∥x− y∥2
F + λ∥x∥T V
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应用举例: 盲反卷积

反卷积是从一个模糊的图像恢复出原来清晰的图像, 也称为去模糊

反卷积问题的模型
y = a ∗ x+ ε

设噪声为高斯噪声，可转化为

min
a,x

1
2

∥y − a ∗ x∥2
2

设原始图像信号在小波变换下是稀疏的，进一步得到

min
a,x

1
2

∥y − a ∗ x∥2
2 + ∥λ⊙ (Wx)∥1

其中 W 是小波框架，λ = (λ1, λ2, · · · , λm)⊤ 用来控制稀疏度
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随机优化问题

随机优化问题可以表示为

min
x∈X

Eξ[F (x, ξ)] + h(x)

F (x, ξ) 表示样本 ξ 上的损失或奖励

h(x) 用来保证解的某种性质

设有 N 个样本 ξ1, ξ2, · · · , ξN，令 fi(x) = F (x, ξi)，得到经验风险极小化问题

min
x∈X

f(x) = 1
N

N∑
i=1

fi(x) + h(x)

样本数 N 比较多，可行域所在空间维数 n 比较大，导致计算困难
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应用举例: 随机主成分分析

如果样本点 ξ 服从某个零均值分布 D，则随机主成分分析可以写成

max
X∈Rp×d

Tr(X⊤AA⊤X) s.t. X⊤X = I

⇓

max
X∈Rp×d

Tr(X⊤Eξ∼D[ξξ⊤]X) s.t. X⊤X = I

⇓

max
X∈Rp×d

1
N

N∑
i=1

Tr(X⊤AiA
⊤
i X) s.t. X⊤X = I
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应用举例: 分布式鲁棒优化

为了提高深度学习预测器的泛化能力，考虑

min
h

Ez[F (h, z)]

⇓
min

h
max
ẑ∈Γ

Eẑ[F (h, ẑ)]

集合 Γ 中随机变量的分布与真实数据的分布在一定意义下非常接近

Wasserstein 距离可以改变原来经验分布的支撑集
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应用举例: 分布式鲁棒优化
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半定规划

半定规划（SDP）是线性规划在矩阵空间中的一种推广

半定规划问题的标准形式

min ⟨C,X⟩
s.t. ⟨A1, X⟩ = b1

· · ·
⟨Am, X⟩ = bm

X ⪰ 0

对偶形式
min − b⊤y

s.t. y1A1 + y2A2 + · · · + ynAn ⪯ C
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LP, SOCP 与 SDP 的比较

LP 与 SDP

LP min c⊤x

s.t. Ax ≤ b

SDP min c⊤x

s.t. diag(Ax− b) ⪯ 0

SOCP 与 SDP

SOCP min f⊤x

s.t. ∥Aix+ bi∥2 ≤ c⊤x+ di, i = 1, · · · ,m

SDP min f⊤x

s.t.
[

(c⊤
i x+ di)I Aix+ bi

(Aix+ bi)⊤ c⊤
i x+ di

]
⪰ 0, i = 1, · · · ,m
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应用举例: 二次约束二次规划问题的半定规划松弛

设Ai 为 n× n 对称矩阵, 考虑二次约束二次规划问题

min
x∈Rn

x⊤A0x+ 2b⊤
0 x+ c0

s.t. x⊤Aix+ 2b⊤
i x+ ci ≤ 0, i = 1, 2, · · · ,m

对任意 x ∈ Rn 以及 A ∈ Sn，有恒等式

x⊤Ax = Tr(x⊤Ax) = Tr(Axx⊤) = ⟨A, xx⊤⟩

原始问题等价于

min
x∈Rn

⟨A0, X⟩ + 2b⊤
0 x+ c0

s.t. ⟨Ai, X⟩ + 2b⊤
i x+ ci ≤ 0, i = 1, 2, · · · ,m

X = xx⊤
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应用举例: 二次约束二次规划问题的半定规划松弛

进一步地

x⊤Aix+ 2b⊤
i x+ ci =

⟨(
Ai bi

b⊤
i ci

)
,

(
X x
x⊤ 1

)⟩
= ⟨Ai, X⟩, i = 0, 1, · · · ,m

半定规划松弛可以写成

min ⟨A0, X⟩
s.t. ⟨Ai, X⟩ ≤ 0, i = 1, 2, · · · ,m

X ⪰ 0
Xn+1,n+1 = 1

约束 X = xx⊤ 松弛成半正定约束 X ⪰ xx⊤（等价于 X ⪰ 0）
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应用举例: 最大割问题的半定规划松弛

最大割问题是找到节点集合 V 的一个子集 S 使得 S 与它的补集 S 之间相
连边的权重之和最大化

令 xj = 1, j ∈ S 和 xj = −1, j ∈ S，则

max 1
2
∑
i<j

(1 − xixj)wij

s.t. xj ∈ {−1, 1}, j = 1, 2, · · · , n

只有当 xi 与 xj 不同时，目标函数中 wij 的系数非零

最大割问题是一个离散优化问题，很难在多项式时间内找到最优解
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应用举例: 最大割问题的半定规划松弛

令 W = (wij) ∈ Sn，并定义 C = −1
4(diag(W1) −W )，得到

min x⊤Cx

s.t. x2
i = 1, i = 1, 2, · · · , n

令 X = xx⊤，则最大割问题可以转化为

min ⟨C,X⟩
s.t. Xii = 1, i = 1, 2, · · · , n

X ⪰ 0, rank(X) = 1

x2
i = 1 意味着矩阵 X 对角线元素 Xii = 1
X = xx⊤ 可以用约束 X ⪰ 0 和 rank(X) = 1 等价刻画
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应用举例: 极小化最大特征值

极小化最大特征值问题可表示为

min λmax(A0 +
∑

i

xiAi)

由于 λmax(A) ≤ t ⇔ A ⪯ tI，则极小化最大特征值可以转化为

SDP 形式

min z

s.t. zI −
∑

i

xiAi ⪰ A0

对偶问题形式

max ⟨A0, Y ⟩
s.t. ⟨Ai, Y ⟩ = 0

⟨I, Y ⟩ = 1
Y ⪰ 0
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应用举例: 极小化二范数问题

令 Ai ∈ Rm×n, 极小化 A(x) = A0 +∑
i xiAi 的二范数

min
x

∥A(x)∥2

SDP 形式
min

x,t
t

s.t.
(

tI A(x)
A(x)⊤ tI

)
⪰ 0

约束形式来源于
∥A∥2 ≤ t ⇔ A⊤A ⪯ t2I, t ≥ 0

⇔
(

tI A(x)
A(x)⊤ tI

)
⪰ 0
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矩阵优化的基本形式

矩阵优化问题的形式
min
X∈X

ψ(X)

X 为特定的矩阵空间
ψ(X) : X → R 为给定的函数，可能是非光滑的

和向量相比，矩阵有许多新的性质, 如秩、特征值等

广泛地出现在组合数学、材料科学、机器学习和统计学等
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矩阵优化的基本形式

低秩矩阵恢复问题

min
X∈Rm×n

1
2

∥X −M∥2
F + µ∥X∥∗

考虑函数 h(X) = ∥X∥∗ 的次微分

∂h(X) = {UV ⊤ +W | ∥W∥2 ≤ 1, U⊤W = 0, WV = 0}

主成分分析问题

min
X∈Rp×d

ψ(X) = −Tr(X⊤AA⊤X) s.t. X⊤X = Id

考虑目标函数的微分
∇ψ(X) = −2AA⊤X
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应用举例：非负矩阵分解

给定矩阵 A = [a1, a2, · · · , an] ∈ Rd×n，将其分解成非负基矩阵 X ∈ Rd×p 和
非负系数矩阵 Y ∈ Rp×n 的乘积，即

A = XY

由于观测含有噪声，原始数据矩阵 A 和分解 XY 不会完全吻合, 应考虑

min
X∈Rd×p, Y ∈Rp×n

1
2

∥A−XY ∥2
F

s.t. X ≥ 0, Y ≥ 0

本质上是将高维空间中的数据在一个低维空间中表示

和主成分分析模型类似, 但会得到比主成分分析模型更有实际意义的解
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应用举例：非负矩阵分解

根据具体应用的不同，还可以考虑带正则项的非负矩阵分解模型

min
X∈Rd×p, Y ∈Rp×n

1
2

∥A−XY ∥2
F + αr1(X) + βr2(Y )

s.t. X ≥ 0, Y ≥ 0

r1(X) 和 r2(Y ) 是正则项
α, β > 0 是用来权衡拟合项和正则项的正则化参数

如果基向量的线性无关性，取 r1(X) = ∥X⊤X − I∥2
F

如果每一个观测值都可以用少数几个基向量来表示, 取 r2(Y ) = ∥Y ∥1
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应用举例：非负矩阵分解
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应用举例：相关系数矩阵估计

给定对称矩阵 C ∈ Sn 和非负对称权重矩阵 H ∈ Sn，求解一个秩小于等于 p
的相关系数矩阵 X，使得在结合了权重矩阵的某种度量下最小化

min
X⪰0

1
2

∥H ⊙ (X − C)∥2
F

s.t. Xii = 1, i = 1, 2, · · · , n
rank(X) ≤ p

将 rank(X) ≤ p 表示为 X = V ⊤V , 其中 V = [V1, V2, · · · , Vn] ∈ Rp×n，得到

min
V ∈Rp×n

1
2

∥H ⊙ (V ⊤V − C)∥2
F

s.t. ∥Vi∥2 = 1, i = 1, 2, · · · , n
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优化软件发展
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优化软件发展
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优化软件发展
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优化软件发展
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优化模型语言

CVX 以 MATLAB 为基础的优化模型语言，求解凸优化问题
快速构造和识别凸性

调用已有软件包求解变形后的凸优化问题

包括免费软件 SDPT3 和 SeDuMi 以及商业软件 Gurobi 和 MOSEK 等
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CVX

考虑优化问题
min ∥Ax− b∥2

s.t. Cx = d

∥x∥∞ ≤ e

1 m = 20; n = 10; p = 4;
2 A = randn(m,n); b = randn(m,1);
3 C = randn(p,n); d = randn(p,1); e = rand;
4 cvx_begin
5 variable x(n)
6 minimize( norm( A * x - b, 2 ) )
7 subject to
8 C * x == d
9 norm( x, Inf ) <= e
10 cvx_end
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Q&A
Thank you!
感谢您的聆听和反馈


